Problem 1

a) If we are given X_k, we know that there are $26 - X_k$ red cards and $26 - (k - X_k)$ black cards. Since the probability of guessing right (or wrong) when next card is drawn depends only on the number of red and black cards left, given X_k, it is independent of the past $(X_{k-1}, X_{k-2}, ...)$). Therefore, $\{X_k\}$ is a Markov chain.

The probability of guessing right (or wrong) when next card is drawn depends on k (because the number of black cards left is $26 - (k - X_k)$ and obviously depends on not only X_k but also k).

Therefore, $\{X_k\}$ is not homogeneous.

b) $P[X_7 = 6|X_6 = 5] = \text{Prob. that the player guesses right when there were 21 reds and 25 blacks before the drawing of the 7th card}$

\[= \frac{21}{46} \]

c) $P[X_9 = 4|X_8 = 2] = \text{Prob. that the player gets 2 dollars more after the drawing of the 9th card}$

\[= 0 \]

d) Given $X_k = i$, we know that there are $(26 - i)$ reds and $(26 - (k - i))$ blacks. Therefore, when $j = i + 1$:

$P[X_{k+1} = j|X_k = i] = \frac{26 - i}{52 - k}$

and when $j = i$:

$P[X_{k+1} = j|X_k = i] = \frac{26 - (k - i)}{52 - k}$

For all other values of j:

$P[X_{k+1} = j|X_k = i] = 0$
Problem 2

a) The population of the \((k+1)\)th generation is

\[X_{k+1} = Y_1 + Y_2 + \ldots + Y_{X_k} \]

We have that

\[P[X_{k+1} = x_{k+1} | X_k = x_k] = P[X_{k+1} = x_{k+1} | X_k] \]

\[= P[Y_1 + Y_2 + \ldots + Y_{X_k} = x_{k+1}] \]

Hence, \(\{X_k\} \) is a Markov chain. It is also homogeneous because the transition probabilities \(P[X_{k+1} = x_{k+1} | X_k = x_k] \) do not depend on \(k \).

b)

\[\begin{array}{c}
0 \quad 1/3 \quad 1/3 \quad 1/3 \\
1/3 \quad 0 \quad 2/3 \quad 1/3 \\
2/3 \quad 1/3 \quad 0 \quad 2/3 \\
1/3 \quad 1/3 \quad 2/3 \quad 0 \\
2/3 \quad 1/3 \quad 1/3 \quad 2/3 \\
1/3 \quad 2/3 \quad 1/3 \quad 0 \\
\end{array} \]

The above is a state transition diagram for the states 0,1,2,3.

The transition probabilities are:

\[P[X_{k+1} = 0 | X_k = 0] = 1 \]

\[P[X_{k+1} = j | X_k = 0] = 0 \quad \forall j > 0 \]

\[P[X_{k+1} = j | X_k = 1] = \begin{cases}
1/3 & \text{for } j = 0 \\
1/3 & \text{for } j = 1 \\
2/3 & \text{for } j = 2 \\
0 & \text{for } j > 2
\end{cases} \]

\[P[X_{k+1} = j | X_k = 2] = \begin{cases}
1/9 & \text{for } j = 0 \\
1/3 & \text{for } j = 1 \\
1/3 & \text{for } j = 2 \\
2/9 & \text{for } j = 3 \\
1/9 & \text{for } j = 4
\end{cases} \]
\[
\begin{align*}
\text{c) } P[X_4^* = 0 | X_c = 1] &= \frac{1}{3} \sum_{\text{all } j \neq 0} P[X_4^* = 0 | X_c = j] P[X_j = j | X_c = 1] \\
&= P[X_4^* = 0 | X_c = 1] P[X_2 = 1 | X_c = 1] + P[X_4^* = 0 | X_c = 2] P[X_2 = 2 | X_c = 1] \\
&= P[X_4^* = 0 | X_c = 1] \frac{1}{3} + P[X_4^* = 0 | X_c = 2] \frac{1}{3} \\
&= \frac{1}{3} \sum_{\text{all } j \neq 0} P[X_4^* = 0 | X_c = j] P[X_2 = 1 | X_c = j] + \frac{1}{3} \sum_{\text{all } j \neq 0} P[X_4^* = 0 | X_c = j] P[X_2 = 2 | X_c = j] \\
&= \frac{1}{3} P[X_4^* = 0 | X_c = 1] P[X_2 = 1 | X_c = 1] + \frac{1}{3} P[X_4^* = 0 | X_c = 2] P[X_2 = 2 | X_c = 1] \\
&\quad + \frac{1}{3} P[X_4^* = 0 | X_c = 1] P[X_2 = 2 | X_c = 1] + \frac{1}{3} P[X_4^* = 0 | X_c = 2] P[X_2 = 2 | X_c = 2] \\
&\quad + \frac{1}{3} P[X_4^* = 0 | X_c = 3] P[X_2 = 3 | X_c = 2] + \frac{1}{3} P[X_4^* = 0 | X_c = 4] P[X_2 = 4 | X_c = 2] \\
&= \frac{1}{3} P[X_4^* = 0 | X_c = 1] + \frac{1}{3} P[X_4^* = 0 | X_c = 2] + \frac{1}{3} P[X_4^* = 0 | X_c = 3] + \frac{1}{3} P[X_4^* = 0 | X_c = 4] \\
&\quad + \frac{2}{27} P[X_4^* = 0 | X_c = 1] + \frac{1}{27} P[X_4^* = 0 | X_c = 2] \\
&= \frac{5}{27} P[X_4^* = 0 | X_c = 1] + \frac{2}{27} P[X_4^* = 0 | X_c = 2] + \frac{2}{27} P[X_4^* = 0 | X_c = 3] + \frac{1}{27} P[X_4^* = 0 | X_c = 4]
\end{align*}
\]

\(X^*\) denotes the event: \([X_4 = 0, X_3 \neq 0, X_2 \neq 0, X_1 \neq 0]\)
\[P[x_4^* = 0|x_2 = 1] = P[x_4^* = 0|x_3 = 1] P[x_2 = 1] + P[x_4^* = 0|x_3 = 2] P[x_2 = 1] + P[x_4^* = 0|x_3 = 3] P[x_2 = 1] \]
\[= P[x_4^* = 0|x_3 = 1] \frac{1}{3} + P[x_4^* = 0|x_3 = 2] \frac{1}{3} + P[x_4^* = 0|x_3 = 3] \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{4}{27} \quad (i) \]

\[P[x_4^* = 0|x_2 = 2] = P[x_4^* = 0|x_3 = 1] P[x_2 = 1] + P[x_4^* = 0|x_3 = 2] P[x_2 = 2] + P[x_4^* = 0|x_3 = 3] P[x_2 = 2] \]
\[+ P[x_4^* = 0|x_3 = 3] P[x_2 = 2] + P[x_4^* = 0|x_3 = 4] P[x_2 = 2] \]
\[= \frac{1}{3} \times \frac{3}{9} + \frac{1}{3} \times \frac{3}{9} + \frac{1}{81} \times \frac{3}{9} + \frac{1}{27} \times \frac{2}{3} + \frac{1}{81} \times \frac{2}{3} + \frac{1}{243} \times \frac{2}{3} = \frac{64}{429} \quad (ii) \]

\[P[x_4^* = 0|x_2 = 3] = P[x_4^* = 0|x_3 = 1] P[x_2 = 1] + P[x_4^* = 0|x_3 = 2] P[x_2 = 3] + P[x_4^* = 0|x_3 = 3] P[x_2 = 3] + P[x_4^* = 0|x_3 = 4] P[x_2 = 3] \]
\[+ P[x_4^* = 0|x_3 = 5] P[x_2 = 3] \]
\[= \frac{1}{3} \times \frac{5}{9} + \frac{1}{3} \times \frac{5}{9} + \frac{1}{81} \times \frac{5}{9} + \frac{1}{27} \times \frac{5}{3} + \frac{1}{81} \times \frac{5}{3} + \frac{1}{243} \times \frac{5}{3} = \frac{163}{2187} \quad (iii) \]

\[P[x_4^* = 0|x_2 = 4] = \sum_{j=1}^{6} P[x_4^* = 0|x_3 = j] P[x_2 = 4] \]
\[= \frac{1}{3} \times \frac{10}{81} + \frac{1}{9} \times \frac{10}{81} + \frac{1}{81} \times \frac{10}{81} + \frac{1}{27} \times \frac{10}{81} + \frac{1}{243} \times \frac{10}{81} + \frac{1}{81} \times \frac{10}{81} = \frac{22000}{531441} \quad (iv) \]

From (i), (ii), (iii), (iv) and (v) we get

\[P[x_4^* = 0|x_0 = 1] = \frac{5}{27} \times \frac{1}{27} + \frac{1}{9} \times \frac{61}{243} + \frac{9}{27} \times \frac{163}{2187} + \frac{1}{81} \times \frac{22000}{531441} = 0.053 \]

\[d) \ P[\text{population remains in existence for more than three generations}] \]
\[= 1 - P[x_4^* = 0|x_0 = 1] = 0.947 \]
Problem 3

b)

\[
P^2 = \begin{bmatrix}
0.4 & 0.4 & 0.2 \\
0.5 & 0.3 & 0.2 \\
0.1 & 0.5 & 0.4
\end{bmatrix}
\begin{bmatrix}
0.4 & 0.4 & 0.2 \\
0.5 & 0.3 & 0.2 \\
0.1 & 0.5 & 0.4
\end{bmatrix} = \begin{bmatrix}
0.38 & 0.38 & 0.24 \\
0.37 & 0.39 & 0.24 \\
0.33 & 0.39 & 0.24
\end{bmatrix}
\]

\[
\begin{bmatrix}
P_c(2) & P_1(2) & P_2(2)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
P^2
\end{bmatrix} = \begin{bmatrix}
0.38 & 0.38 & 0.24 \\
0.37 & 0.39 & 0.24 \\
0.33 & 0.39 & 0.24
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.5 & 0.3 & 0.2
\end{bmatrix}
\]

\[
\begin{bmatrix}
P_c(2) & P_1(2) & P_2(2)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
P^2
\end{bmatrix} = \begin{bmatrix}
0.37 & 0.39 & 0.24
\end{bmatrix}
\]
c) \[
\begin{bmatrix}
\pi_0 & \pi_1 & \pi_2 \\
\end{bmatrix} = \begin{bmatrix}
\pi_0 & \pi_1 & \pi_2 \\
0.4 & 0.4 & 0.2 \\
0.5 & 0.3 & 0.2 \\
0.4 & 0.5 & 0.4 \\
\end{bmatrix}
\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]
\[\pi_0 = 0.4 \pi_0 + 0.5 \pi_1 + 0.1 \pi_2 \]
\[\Rightarrow \pi_1 = 0.4 \pi_0 + 0.3 \pi_1 + 0.5 \pi_2\]
\[\pi_2 = 0.2 \pi_0 + 0.9 \pi_1 + 0.4 \pi_2\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]

\[0.6 \pi_0 = 0.5 \pi_1 + 0.1 \pi_2\]
\[0.4 \pi_0 = 0.7 \pi_1 - 0.5 \pi_2\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]

\[\pi_0 = \frac{5}{6} \pi_1 + \frac{1}{6} \pi_2\]
\[\pi_0 = \frac{1}{4} \pi_1 - \frac{5}{4} \pi_2\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]

\[\Rightarrow \pi_1 = \frac{5}{6} \pi_1 + \frac{1}{6} \pi_2\]
\[\pi_1 = \frac{5}{4} \pi_1 - \frac{5}{4} \pi_2\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]

\[\Rightarrow \pi_2 = \frac{5}{6} \pi_1 + \frac{1}{6} \pi_2\]
\[\pi_2 = \frac{1}{4} \pi_1 - \frac{5}{4} \pi_2\]
\[\pi_0 + \pi_1 + \pi_2 = 1\]

\[\Rightarrow \pi_0 = \frac{4}{11}\]
\[\Rightarrow \pi_1 = \frac{17}{44}\]
\[\pi_2 = \frac{14}{44}\]

\[\pi_0 = \frac{1}{\lambda_0} = \frac{4}{11} \Rightarrow \lambda_0 = \frac{11}{4}\]

is the average number of days between two consecutive sunny days.
Problem 4

a) \[P[D_k = m \mid X_k = i] = \begin{cases} \binom{i}{m} p^m (1-p)^{i-m} & m = 0, 1, \ldots, i \\ 0 & m \geq i+1 \end{cases} \]

b) \[P[X_{k+1} = j \mid X_k = i] = 0 \quad \text{for} \quad j \geq 1 \]

For \(j \leq i \),

\[P[X_{k+1} = j \mid X_k = i] = P[X_k - D_k + A_{k+1} = j \mid X_k = i] \]

\[= \frac{P[X_k - D_k + A_{k+1} = j, X_k = i]}{P[X_k = i]} = \frac{P[A_{k+1} - D_k = j - i, X_k = i]}{P[X_k = i]} \]

\[= \sum_{m=1}^{\infty} \frac{P[A_{k+1} - D_k = j - i, D_k = m, X_k = i]}{P[X_k = i]} \]

\[= \sum_{m=1}^{\infty} \frac{P[A_{k+1} = j - i + m]}{P[X_k = i]} \]

\[= \sum_{m=1}^{\infty} e^{-\lambda} \frac{\lambda^{j-i+m}}{(j-i+m)!} \frac{i!}{m! (i-m)!} p^m (1-p)^{i-m} \]

\[= e^{-\lambda} \sum_{m=i}^{\infty} \frac{i!}{(j-i+m)! (i-m)!} \lambda^{j-i+m} p^m (1-p)^{i-m} \]

\[c) \quad X_k = X_0 - D_k + A_k \]

\[X_0 = 0 \Rightarrow D_k = 0 \]

\[\Rightarrow X_k = A_k \]

which implies that \(X_2 \) has a Poisson distribution with parameter \(\lambda \).
\[P[X_i - D_i = k] = P[D_i = X_i - k] = \sum_{k=0}^\infty P[D_i = X_i - k | X_i = l] P[X_i = l] \]
\[= \sum_{k=0}^\infty P[D_i = l-k | X_i = l] P[X_i = l] \]
\[= \sum_{k=0}^\infty \left(\frac{\lambda^k}{k!} e^{-\lambda} \right) \frac{\lambda^k}{k!} (1-p)^k \frac{2^l}{l!} e^{-2} \]
\[= \sum_{k=0}^\infty \left(\frac{\lambda^k}{k!} \right) \frac{\lambda^k}{k!} (1-p)^k \frac{2^l}{l!} e^{-3} \]
\[= e^{-3} \left(\frac{\lambda}{(1-p)} \right)^k \sum_{k=0}^\infty \frac{(\lambda)^k}{k!} \frac{(1-p)^k}{k!} \frac{2^l}{l!} \]
\[= e^{-3} \left(\frac{\lambda}{(1-p)} \right)^k \sum_{k=0}^\infty \frac{(\lambda)^k}{k!} \frac{(1-p)^k}{k!} \frac{2^l}{l!} \]
\[= e^{-3} \left(\frac{\lambda}{(1-p)} \right)^k \]
\[= e^{-3} \left(\frac{\lambda}{(1-p)} \right)^k e^{-2(1-p)} \]
\[i.e. \ (X_i - D_i) \text{ has a Poisson distribution with parameter } \lambda(1-p) \]
\[X_i = (X_i - D_i) + D_i \text{ i.e. } X_i \text{ is the sum of two r.v.s of Poisson distribution with rates } \lambda(1-p) \text{ and } \lambda, \text{ respectively. Consequently, } X_i \text{ has a Poisson distribution of rate } \lambda(1-p) + \lambda = \lambda(1-p). \]

(d) If \(X_0 \sim \text{Poisson}(\nu) \), then from part (b) we can get \((X_0 - D_0) \sim \text{Poisson}(\nu(1-p))\)
It follows that : \(X_1 = (X_0 - D_0) + A_1 \sim \text{Poisson}(\lambda + \nu(1-p)) \).
We would like to have : \(\lambda + \nu(1-p) = \nu \Rightarrow \nu = \frac{\lambda}{1-p} \).
Clearly, the process repeats for \(X_2 = (X_1 - D_1) + A_2 \), etc.
Problem 5

\[p_0 = \frac{1}{1 + \sum_{m=1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 + \frac{\theta_i}{\mu_i+1} + \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]

\[= \frac{1}{1 - \frac{(\theta/\mu)^{k+1}}{m=k+1} \frac{\theta_i}{\mu_i+1} - \sum_{m=k+1}^{\infty} \frac{(\theta/\mu)^m}{m!} \frac{\theta_i}{\mu_i+1}} \]
Therefore,

\[
P_m = \begin{cases}
\left(\frac{\theta}{\mu} \right)^m & \text{for } m \leq k+1 \\
\frac{1 - \frac{2}{\mu} \sum_{j=0}^{m} \frac{2^j}{j!} \left(\frac{1}{k+1} \right)^j}{1 - \frac{2}{\mu} + \frac{2}{\mu} k} \left(e^{\frac{2}{\mu} k} - \sum_{j=0}^{m} \frac{2^j}{j!} \left(\frac{1}{k+1} \right)^j \right) & \text{for } m \geq k+1
\end{cases}
\]

b) The average queue length \(E[X] \) is

\[
E[X] = \sum_{m=0}^{\infty} m P_m = \left(\sum_{m=0}^{k} m \left(\frac{\theta}{\mu} \right)^m + \sum_{m=k+1}^{\infty} m \left(\frac{\theta}{\mu} \right)^m \frac{k^m}{(m-k)!} \right) \frac{1}{1 - \frac{2}{\mu} + \frac{2}{\mu} k} \left(e^{\frac{2}{\mu} k} - \sum_{m=0}^{k} \frac{2^j}{j!} \left(\frac{1}{k+1} \right)^j \right)
\]

The system time at steady state is

\[E[S] = \frac{E[X]}{\rho} \]

where \(\rho = 1 - P_0 \) is the throughput of the system.

c) The system remains stable as long as \(\mu > \) average arrival rate, i.e.

\[
\mu > \sum_{n=0}^{k} n \lambda P_n + \sum_{n=k+1}^{\infty} \frac{n}{n} P_n = \lambda \left[\sum_{n=0}^{k} P_n + \sum_{n=k+1}^{\infty} \frac{P_n}{n} \right]
\]
The computer system can be modeled as an M/M/1/k queue, which is analyzed in section (6.6.1). The blocking probability for any transaction is given by (6.61):

\[P_b = (1-p) \frac{\rho^k}{k!} \]

where \(\rho = \frac{\mu_1 \mu_2}{\lambda_1} \)

The service rate is \(\mu = \frac{1}{5} \text{ sec}^{-1} \) the rate of the first source transaction is \(\lambda_1 = 4 \text{ min}^{-1} = \frac{1}{15} \text{ sec}^{-1} \) and the rate of the second source transaction is \(\lambda_2 = 3 \text{ min}^{-1} = \frac{1}{20} \text{ sec}^{-1} \).

Thus, \(\rho = \frac{4 \times 3}{15 + 20} = 0.7 \)

and \(\frac{1}{15} + \frac{1}{20} = 0.1 \)

\[P_b = (1-0.7) \left(\frac{0.7)^k}{1-0.7^{k+1}} \right) = 0.3 \left(\frac{0.7)^k}{1-0.7^{k+1}} \right) \]

The blocking probability for a transaction generated by the first source is \(P_b = \frac{\mu_1}{\lambda_1 \mu_2} \). Hence

\[P_b \frac{\partial}{\partial \mu_2} \leq 0.1 \Rightarrow 0.3 \left(\frac{0.7)^k}{1-0.7^{k+1}} \right) \frac{1}{15 + \frac{1}{20}} \leq 0.1 \Rightarrow \]

\[\Rightarrow \frac{3}{10} \frac{0.7^k}{1-0.7^{k+1}} \leq 0.1 \Rightarrow \frac{0.7^k}{1-0.7^{k+1}} \leq 0.1 \Rightarrow \]

\[\Rightarrow k \log(0.7) \leq \log(0.1) \Rightarrow k \geq \frac{\log(0.7)}{\log(0.1)} \Rightarrow k \geq 2.47 \]

Hence the minimum value of \(k \) is 3.
The blocking probability for a transaction generated by the second source is \(P_b \leq 0.02 \). Hence

\[
P_b \leq 0.02 \Rightarrow 0.3 \times \frac{(0.7)^k}{1 - (0.7)^k} \leq \frac{5}{10} \Rightarrow 0.3 \leq \frac{5}{(10-k)^k}
\]

\[
\Rightarrow \frac{3}{10} \leq \frac{3}{4} \times \frac{(0.7)^k}{1 - (0.7)^k} \leq 0.02 \Rightarrow 9 \times (0.7)^k \leq 1.4 \Rightarrow (0.7)^k \leq \frac{1.4}{9}
\]

\[
(0.7)^k \leq \frac{1.4}{9.98} \Rightarrow k \leq \ln \frac{1.4}{9.98} \Rightarrow k \geq \frac{\ln \frac{1.4}{9.98}}{\ln 0.7} \approx 5.507
\]

Hence the minimum value of \(k \) is 6.

The minimum value of \(k \) for the blocking probability of both sources to satisfy the constraints is 6.

Now the model is an \(M/M/C/1/6 \) queue with arrival rate

\[
\lambda = \frac{1}{15} + \frac{1}{10} = \frac{23}{60}
\]

The average system time \(E[S] \) is given by (6.63):

\[
E[S] = \frac{E[X]}{\lambda (1 - \rho)}
\]

with

\[
E[X] = \frac{1 - \rho}{1 - \rho^k} \left(\frac{k - \rho^k}{1 - \rho^k} - k \rho^k \right) \quad \text{(by (6.62))}
\]

and

\[
\pi_k = (1 - \rho) \frac{\rho^k}{1 - \rho^k} \quad \text{(by (6.61))}
\]

In our case:

\[
k = 6, \lambda = \frac{23}{60}, \mu = \frac{1}{6}, \rho = \frac{23}{6} = \frac{23}{60} = 0.7
\]

\[
E[X] = \frac{0.7^6}{1 - 0.7^6} \left[\frac{6 - (0.7)^6}{1 - 0.7} - 6 \times (0.7)^6 \right] = \approx 1.87
\]

\[
\pi_k = 0.3 \times \frac{(0.7)^k}{1 - (0.7)^k} = 0.038 \quad \text{and} \quad E[S] = \frac{1.87}{60 (1 - 0.038)} \approx 1.66 \text{ sec.}
\]
Our model is a Jackson network of five nodes. Let's calculate the actual arrival rates λ_i at each node i:

\[
\begin{align*}
\lambda_1 &= \lambda_3 + \lambda_4 + \lambda_5 = 1 + \lambda_4 \\
\lambda_2 &= \lambda_3 \pi_3 + \lambda_5 \pi_5 = 0.8 \lambda_5 + \lambda_5 \\
\lambda_5 &= \lambda_3 \pi_5 = \lambda_2 \\
\lambda_4 &= \lambda_3 \pi_4 + \lambda_5 \pi_5 = 0.8 \lambda_1 + 1.0 \lambda_5 \\
\lambda_5 &= \lambda_3 \pi_5 = 0.8 \lambda_5
\end{align*}
\]

\[
\begin{align*}
\lambda_1 &= \frac{5}{3} \\
\lambda_2 &= \frac{5}{3} \\
\lambda_3 &= \frac{5}{3} \\
\lambda_4 &= \frac{5}{3} \\
\lambda_5 &= \frac{1}{3}
\end{align*}
\]

a) Each node M_i can be treated as an $M/M/1$ queuing system with arrival rate λ_i and service rate μ_i.

Hence,

\[p_1 = \frac{\lambda_1}{\mu_1} = \frac{5/3}{2} = \frac{5}{6} \quad \text{and} \quad p_2 = \frac{\lambda_2}{\mu_2} = \frac{5/3}{\mu_4} = \frac{20}{21} \]

\[p_3 = \frac{\lambda_3}{\mu_3} = \frac{5/3}{2} = \frac{5}{3} \quad \text{and} \quad p_4 = \frac{\lambda_4}{\mu_4} = \frac{2/3}{1} = \frac{2}{3} \quad \text{and} \quad p_5 = \frac{\lambda_5}{\mu_5} = \frac{1/3}{0.5} = \frac{2}{3} \]

b) The throughput of the system is

\[\rho = \lambda_3 \pi_3 = \frac{5}{3} \times 0.6 = 1 \]

c) If X_i is the queue length at node M_i, $i=1,2,...,5$, then the average total number of customers in the system, $E[X]$, is

\[E[X] = \sum_{i=1}^{5} E[X_i] = \sum_{i=1}^{5} \frac{\lambda_i}{1-\rho_i} = \frac{5}{1-5/6} + \frac{20/21}{1-20/21} + \frac{25/33}{1-25/33} + \frac{2/3}{1-2/3} + \frac{2/3}{1-2/3} \]

\[= 5 + 20 + \frac{25}{8} + 2 + 2 = 32.125 \]

The arrival rate λ into the system is

\[\lambda = \lambda_3 \pi_3 = 1 \]

By Little's law, the average system time $E[S]$ is

\[E[S] = \frac{E[X]}{\lambda} = \frac{32.125}{1} = 32.125 \]
$$P(X_2 > 3) = 1 - P(X_2 = 0) - P(X_2 = 1) - P(X_2 = 2) - P(X_2 = 3)$$

$$= 1 - (1-p_2) - (1-p_2) p_2 - (1-p_2) p_2^2 - (1-p_2) p_2^3$$

$$= 1 - \frac{1}{2.1} - \frac{1}{2.1} \frac{20}{21} - \frac{1}{2.1} \left(\frac{20}{21} \right)^2 - \frac{1}{2.1} \left(\frac{20}{21} \right)^3$$

$$\approx 0.823$$
Problem 8

\[P_1 = p \quad P_2 = (1-p) \]
\[P_1 = \frac{\beta_1}{\mu_1} \quad P_2 = \frac{\beta_2}{\mu_2} \]
\[P_2 = \frac{\beta_2}{\mu_2} \quad P_2 = \frac{u_2}{\mu_2} = \frac{u_2-eta_2}{\mu_2} \]

The average system time for queue 1 is:
\[E[S_1] = \frac{1/\mu_1}{1-P_1} = \frac{1/\mu_1}{1-\frac{\beta_1}{\mu_1}} = \frac{1}{1-\frac{\beta_1}{\mu_1}} \]

and for queue 2:
\[E[S_2] = \frac{1/\mu_2}{1-P_2} = \frac{1/\mu_2}{1-\frac{\beta_2}{\mu_2}} = \frac{1}{1-\frac{\beta_2}{\mu_2}} \]

The average system time for the whole system is:
\[E[S] = pE[S_1] + (1-p)E[S_2] \]
\[= \frac{p}{1-\frac{\beta_1}{\mu_1}} + \frac{1-p}{1-\frac{\beta_2}{\mu_2}} \]

The value of \(p \) that minimizes \(E[S] \) is determined as follows:
\[\frac{dE[S]}{dp} = 0 \Rightarrow \frac{\mu_1-\beta_1-\beta_2(1-p)}{(1-\frac{\beta_1}{\mu_1})^2} + \frac{-\mu_2(1-p) + \frac{\beta_2}{\mu_2}}{[\mu_2-(1-\frac{\beta_1}{\mu_1})]^2} = 0 \]

\[\Rightarrow \mu_1^2 - \mu_1(1-p)\beta_1 - \mu_1^2 - \mu_1^2(p_1 - \beta_2) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

\[\Rightarrow \mu_1^2 \mu_2^2(1-p)^2 - 2\gamma \mu_2(1-p) = 0 \]

For \(\gamma = 2, \mu_1 = 1, \mu_2 = 1.5 \), we get:
\[4(1-1.5)p^2 + 4(1.5+1.5-2) = 10p^2 + 2.25 + 4 - 1.5 = 0 \]
\[\Rightarrow -2p^2 + 4p - 1.25 = 0 \Rightarrow 2p^2 - 4p + 1.25 = 0 \Rightarrow \]
\[p_1 = \frac{1 + \sqrt{1}}{4} = 0.388 \]
\[p_2 = 1 - \frac{\sqrt{1}}{4} = 0.388 \]
b) In this case, we have:

\[E[S_1] = \frac{1}{\mu_2 - \mu_2^2} = \frac{1}{1-2p} \] as before, but to evaluate \(E[S_2] \) we must

set \(g=0 \) in the Pollaczek-Khinchin formula (6.120):

\[
E[S_2] = \frac{1}{\mu_2} - \frac{\mu_2}{2(1-p)} = \frac{1}{\mu_2} - \frac{4(1-p)}{\mu_2} - \frac{2(1-p)}{3(1-p)}
\]

\[
= \frac{1}{\mu_2 - (1-p)^2} - \frac{2\mu_2[1-p(1-p)]}{4(1-p)}
\]

\[
= \frac{1}{\mu_2 - (1-p)^2} - \frac{2(1-p)}{3(1-p)}
\]

\[
= \frac{2}{4p-1} - \frac{2(1-p)}{3(4p-1)}
\]

\[
= \frac{2(1+2p)}{3(4p-1)}
\]

\[
E[S] = \frac{p}{1-2p} + \frac{2(1-p)(1+2p)}{3(4p-1)}
\]

To calculate \(p \) that minimizes \(E[S] \):

\[
\frac{dE[S]}{dp} = \frac{1}{(1-2p)^2} + \frac{-4p^2 + 24p - 30}{9(4p-1)^2} = 0
\]

\[q(4p-1)(1-2p)^2(-4p^2 + 24p - 30) = 0 \]

\[144p^2 - 72p + 9 - 48p^2 + 24p - 30 = 0 \]

\[-192p^4 + 288p^3 - 120p^2 + 192p^3 - 96p^2 + 120p = 0 \]

\[-192p^4 + 288p^3 - 120p^2 + 72p - 18 = 0 \]

\[-64p^4 + 96p^3 - 40p^2 + 24p - 7 = 0 \]

\[\Rightarrow p = 0.37 \quad \text{(numerically)} \]