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Abstract

This Java simulator includes a discrete-event model for the manufacturing
system shown in Fig. 1. In addition, it includes optimization modules that run
Infinitesimal Perturbation Analysis to get sensitivity estimates which are then
used together with stochastic approximation to solve constrained and uncon-
strained optimization problems.

1 Model

We consider the make-to-stock (MTS) system shown in Fig. 1. The upstream machine
M2 can produce parts at a rate µ2(t) and is assumed to have an infinite supply.
The output of M2 is placed in the work-in-process buffer W which has capacity
θW . Machine M1 processes parts from W at a rate µ1(t) and fills the finished part
inventory buffer F . Finally, F is drained by the demand at a rate ρ(t). Functions
µ1(t), µ2(t) and ρ(t) are assumed piecewise constant.

Let (x(t), y(t)) denote the state of the system, where x(t) ≤ θF , 0 ≤ y(t) ≤ θW

correspond to the number of parts present in F and W respectively. Note that x(t)
can take negative values and these correspond to the amount of backlogged demand.
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Figure 1: System Model

1.1 Objective

In the context of MTS manufacturing systems we consider the sample function LT (θF , θW )
which in general has the form

LT (θF , θW ) =
1

T

∫ T

0

(
cF [x(t)]+ + cW y(t) + cD[−x(t)]+

)
dt. (1)

The first two terms correspond to the average inventory cost in F and W respectively
and the third one corresponds to the average cost of backlogged demand. Further-
more, [x]+ = max{0, x} and cF , cW , cD are non-negative constants. cF and cW

correspond to the inventory cost per part per unit time in the buffers F and W
respectively. cD is the backlog demand cost per part per unit time.

2 Installing and Running the Simulator

In a command line window type

D:\Temp\mts>java -jar MTSSimulator.jar mtssimulator.mts

where D:\Temp\mts> is the location where the MTSSimulator.jar file is saved.

3 Software Options

From the Model menu item you can select the model to be used. The two possible
models are a detailed discrete event simulation (DES) model or a discrete time (DT)
model. The default is a DT model.

The cost parameters cF , cW , and cD can be changed from the Cost menu item. The
default values are cF = 1, cW = 1, and cD = 0.

3.1 Run Menu Item

From the Run menu item it is possible to run simulations and optimization algorithms
for minimizing the LT (θF , θW ) given in (1).
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From the Simulator Test you can run a single simulation for a given buffer capacity.
Derivative Test is similar to Simulator Test but it also provides derivative estimates
with respect to the buffer capacities.

Plot cost surface runs simulations for various buffer capacities in a given range. The
recorded cost and stockout probability is the average of the selected number of sim-
ulation runs. The results are saved in a file that can be easily plotted using Excel.

From the Optimization menu item you can select various optimization algorithms that
minimize LT (θF , θW ).

No Constraint: There is no explicit QoS constraint. In this case cD > 0 otherwise
the optimal is at the origin.

LU
T (θF , θW ) = LT (θF , θW ) (2)

Penalty Method: Minimizes the unconstraint function

LP
T (θF , θW ) = LT (θF , θW ) +

p

2
‖Pr[x(t) < 0]− ε‖2 (3)

Lagrangian Relaxation: Minimizes the unconstraint function

LL
T (θF , θW ) = LT (θF , θW ) + λ max {0, Pr[x(t) < 0]− ε} (4)

Multiplier Method: Minimizes the unconstraint function

LM
T (θF , θW ) = LT (θF , θW ) + λ (Pr[x(t) < 0]− ε) +

p

2
‖Pr[x(t) < 0]− ε‖2 (5)

For all algorithms, the buffer thresholds are updated using gradient descent:

θk+1
F = θk

F − α
∂Li

T (θk
F , θk

W )

∂θF

(6)

θk+1
W = θk

W − α
∂Li

T (θk
F , θk

W )

∂θW

(7)

where i = U, P, L, M, and α is a constant step size. For the Penalty and Multiplier
methods the penalty is increased linearly

pk+1 = pk + δp (8)

where δp > 0 is a given constant selected by the user. For the Multiplier method, λ
is updated using the following equation:

λk+1 = λk + pk (Pr[x(t) < 0]− ε) (9)

All optimization algorithm end when the derivative magnitude becomes less than a
user selected value (minimum derivative).
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4 Distributions

The user can also change the demand and machine processing distributions. The
default is the one from Yong’s report. Other options are the following

Exponential: Parameter: mean event lifetime (NOT rate=1/mean).

Erlang: Parameters: mean and Erlang order.

Uniform: Parameter: Lifetime from the interval [min, max].

2-State MMPP: Returns random variates from 2 exponential distributions. Each
exponential distribution has a given mean. Furthermore, the exponential variate
to be generated is determined from the state of a 2-state Markov chain. State
changes occur with certain rates that are also parameters of the distribution.

2-State MMCP: Returns either of 2 (deterministic) event lifetimes. The returned
variate to be generated is determined from the state of a 2-state Markov chain.
State changes occur with certain rates that are also parameters of the distribu-
tion.

2-State DT-MMPP: Discrete time MMPP. At every time slot (of length 1) it gen-
erates a number of events that is Poisson distributed with a rate that depends on
the state of the Markov chain. The returned lifetimes are such that the events
are uniformly distributed in the time slot. State changes can occur at the be-
ginning of the time slot with a given state transition probabilities (parameters
of the distribution).

2-State DT-MMPP-E: Similar to the 2-State DT-MMPP above, except that all
lifetimes are such that all events occur at the end of the time slot.

2-State DT-MMCP: Discrete time MMCP. At every time slot (of length 1) it
generates a deterministic number of events which depends on the state of the
Markov chain. The returned lifetimes are such that the events are uniformly
distributed in the time slot. State changes can occur at the beginning of the time
slot with a given state transition probabilities (parameters of the distribution).

2-State DT-MMCP-E: Similar to the 2-State DT-MMCP above, except that all
lifetimes are such that all events occur at the end of the time slot.

Deterministic: Returns a deterministic lifetime.

Hyperexponential: Returns an exponentially distributed lifetime with either of 2
means, each with a given probability.

Gaussian: Normally distributed lifetimes with a given mean and standard deviation
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