Τοπικά Δίκτυα
Περίληψη

- Ethernet
- Δίκτυα Δακτυλίου, (Token Ring)
- Άλλα Δίκτυα
- Σύνδεση Τοπικών Δικτύων.
 - Αναμεταδότες, Γέφυρες, Μεταγωγείς, δρομολογητές και Πύλες (repeaters, hubs, bridges, switches, routers, gateways).
IEEE Standards

- IEEE 802: Local Area Networks
 - 802.3: Ethernet
 - 802.5: Token Ring
 - 802.11: Wireless LANs
 - 802.15: Bluetooth
 - 802.16: Wireless MANs
Ethernet: Φυσικό Επίπεδο

- Καλωδιακές τοπολογίες

 - Δύο κόμβοι δεν μπορούν να απέχουν απόσταση μεγαλύτερη από 2.5km
 - Κάθε μονοπάτι δεν μπορεί να περιέχει περισσότερους από 4 αναμεταδότες (repeaters)

- Χρησιμοποιεί Κωδικοποίηση Manchester
Πλαίσιο Ethernet

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Preamble</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Type</th>
<th>Data</th>
<th>Pad</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0-1500</td>
<td>0-46</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

IEEE 802.3

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Preamble</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Length</th>
<th>Data</th>
<th>Pad</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0-1500</td>
<td>0-46</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- Διευθύνσεις:
 - Εκπομπή: broadcast (111…111)
 - Πολύεκπομπή: multicast (1***…***)
 - Σημείο προς σημείο: unicast (0***…***
Μέγιστο και Ελάχιστο Πλαίσιο.

- **Μέγιστο πλαίσιο**: 1500 bytes από δεδομένα
- **Ελάχιστο Πλαίσιο**: για το «κλασσικό» 10Mbps Ethernet είναι 64 Bytes!

Πώς αποφάσισαν για αυτά τα μεγέθη;

- Ο λόγος για το μέγιστο είναι ιστορικός από την αποχή που η μνήμη ήταν ακριβή!
- Για το ελάχιστο ο λόγος είναι τεχνικός!
- Το Ethernet εάν δεν ανιχνεύσει σύγκρουση, υποθέτει πως το πλαίσιο παραλήφθηκε χωρίς πρόβλημα! Επομένως, εάν μια μετάδοση τελειώσει και η σύγκρουση ανιχνευθεί αργότερα, τότε το Ethernet δεν θα ξέρει ότι πρέπει να ξαναστείλει το πλαίσιο!
Μέγιστο και Ελάχιστο Πλαίσιο.

- Ποίος ο μέγιστος χρόνος ανίχνευσης σύγκρουσης;

\[2\tau = \frac{2d}{c} \]

- Η μέγιστη απόσταση \(d \) είναι 2.5Km και η «με επιστροφή» καθυστέρηση διάδοση είναι περίπου 50μsec. Στο κλασσικό 10Mbps Ethernet, αυτή η καθυστέρηση συνεπάγεται ελάχιστο πλαίσιο 10Mbps*50μsec = 512bits=64 Bytes
Δυαδική Εκθετική Οπισθοδρόμηση
(Binary Exponential Backoff)

- Μόλις ανιχνευθεί σύγκρουση τότε ο χρόνος μοιράζεται σε διακριτά διαστήματα διάρκειας 2^τ όπου τ είναι η καθυστέρηση διάδοσης.
- Το πλαίσιο επαναμεταδίδεται αμέσως με πιθανότητα 0.5 ή με ένα διαστήματα καθυστέρηση με πιθανότητα 0.5.
- Εάν υπάρξει ξανά σύγκρουση τότε το πλαίσιο επαναμεταδίδεται με καθυστέρηση 0, 1, 2, ή 3 διαστήματα, όλα με πιθανότητα 0.25.
- Εάν ένα πλαίσιο συγκρουστεί n φορές, τότε, πριν επαναμεταδοθεί περιμένει ένα τυχαίο διάστημα μεταξύ 0 και $\min\{1023, 2^n-1\}$.
- Μετά από 16 συγκρούσεις τότε ο αλγόριθμος σταματά και στέλνει μήνυμα στο ψηλότερο επίπεδο (επίπεδο δικτύου).
Απόδοση του Ethernet

- k-σταθμοί.
- Η πιθανότητα με την οποία κάποιος σταθμός επιτυγχάνει να «κερδίσει» το κανάλι

\[P_s = Pr[success] = kp(1 - p)^{k-1} \]

- \(P_s \) μεγιστοποιείται όταν \(p = 1/k \) και \(P_s \to 1/e \) όσο το \(k \to \infty \).
- Ο μέσος αριθμός περιόδων ανταγωνισμού

\[\sum_{k=0}^{\infty} kP_s \left(1 - P_s\right)^{k-1} = \frac{1}{P_s} \]

- Ο μέσος χρόνος μετάδοσης ενός πλαίσιου είναι \(T \), τότε η απόδοση του καναλιού είναι

\[Channel \; Efficiency = \frac{T}{T + 2\tau / P_s} \]
Απόδοση του Ethernet

- Εάν \(k \to \infty \), τότε \(P_s = 1/e \) και ο μέσος αριθμός διαστημάτων ανταγωνισμού ανά πλαίσιο είναι \(1/P_s = e \).
- Οπότε το μέσο διάστημα ανταγωνισμού είναι \(2\tau e = 2Le/c \) όπου \(L \) είναι το μήκος του καλωδίου.
- Η μέση διάρκεια ενός πλαισίου είναι \(T = F/B \), όπου \(F \) είναι το μέσο μέγεθος ενός πλαισίου σε bits και \(B \) είναι το εύρος ζώνης (bandwidth) του καναλιού.

\[
\text{Channel Efficiency} = \frac{1}{1 + 2BLe / cF}
\]
Switched Ethernet

- Ο αριθμός των χρηστών που ανταγωνίζονται για πρόσβαση στο ίδιο κανάλι μοιράζεται
Fast and Gigabit Ethernet

- Δίλημμα: Επανασχεδιασμός του Ethernet ή αναβάθμισή του Ethernet;
- Ελάχιστο μέγεθος πλαισίου και μέγιστη απόσταση την οποία καλύπτει το Ethernet.
 - Αυξάνοντας την ταχύτητα του Ethernet συνεπάγεται ότι ο χρόνος μετάδοσης πλαισίων μειώνεται.
 - Μειώνοντας τον χρόνο μετάδοσης ενός πλαισίου, πρέπει ή να αυξήσουμε το ελάχιστο μέγεθος πλαισίων ή να μειώσουμε το μήκος του καλωδίου.
 - Για το Gigabit Ethernet εάν το ελάχιστο μέγεθος πλαισίου παραμείνει 64 bytes συνεπάγεται ότι το μέγιστο μήκος καλωδίου δεν μπορεί να ξεπερνά το 25m!
 - Υποχρεωτικά το μέγεθος του ελάχιστου πλαισίου πρέπει να αυξηθεί.
Γιατί το Ethernet παρουσιάζεται «διαχρονικό»

- Εφαρμόζει την αρχή του KISS
 - Keep It Simple, Stupid!
- Απλό, συνεπάγεται φθηνό
- Είναι εύκολο στη διαχείριση. Δεν υπάρχει αναγκαίο λογισμικό που να χρειάζεται...
- Είναι εύρωστο (robust) και δεν παρουσιάζει ιδιαίτερα προβλήματα.
- Λειτουργεί ικανοποιητικά με το TCP/IP.
Δίκτυα Δακτυλίου (IEEE 802.5)

- Όλοι οι κόμβοι είναι τοποθετημένοι σε ένα δακτύλιο.
- Εκπέμπει μόνο ο κόμβος ο οποίος έχει τη σκυτάλη (token).
- Ένα πλαίσιο περνά από όλους τους κόμβους του δακτυλίου.
- Ο κόμβος ο οποίος μετάδωσε ένα πλαίσιο είναι υπεύθυνος να το αφαιρέσει από τον δακτύλιο αφού συμπληρώσει κύκλο.
- Επίσης ο κόμβος είναι υπεύθυνος να ελευθερώσει τη σκυτάλη είτε μόλις ολοκληρώσει την μετάδοση του πλαίσιου είτε μόλις αφαιρέσει το πλαίσιο από τον δακτύλιο.
- Κάθε πλαίσιο που επιστρέφει στο αποστολέα περιέχει επίσης και bits επαλήθευσης (A και C).
Δίκτυα Δακτυλίου (IEEE 802.5)

- Τι μπορεί να πάει λάθος;
 - Καθυστέρηση:
 - Υπάρχει μέγιστος επιτρεπτός χρόνος κατά τον οποίο κάθε κόμβος μπορεί να κρατεί τη σκυτάλη (Token Holding Time (THT)).
 - Υπάρχει μέγιστος επιτρεπτός χρόνος για να συμπληρώσει μια περιστροφή η σκυτάλη (Target Token Rotation Time)
 - Απώλεια της σκυτάλης.
 - Κάθε κόμβος μετρά το χρόνο από την προηγούμενη σκυτάλη. Αν αυτός υπερβαίνει τα 2.5ms, τότε ζητά τη σκυτάλη.
 - Αν δεν υπάρχει κόμβος με ψηλότερη προτεραιότητα, τότε ο κόμβος αυτός ξαναδημιουργεί τη σκυτάλη.
 - «Επείγοντα» πλαίσια
 - Η σκυτάλη υποστηρίζει επίσης Προτεραιότητες
Σύνδεση μεταξύ Τοπικών Δικτύων

- Αναμεταδότες (repeaters): Απλά αναμεταδίδουν ένα πλαίσιο μεγαλώνοντας την ισχύ του σήματος.
 - Είναι καθαρά συσκευή του φυσικού επιπέδου.

- Hubs
 - Συσκευή φυσικού επιπέδου
 - Όλοι οι κόμβοι λαμβάνουν όλα τα μηνύματα
 - Υπάρχει η περίπτωση σύγκρουσης πλαισίων!
Γέφυρες (Bridges)

- Συσκευή του στρώματος «ζεύξης δεδομένων»
- Συνδέει μεταξύ τους δύο ή περισσότερα τοπικά δίκτυα
- Είναι επιθυμητό να έχουν τη δυνατότητα να συνδέουν ανομοιογενή τοπικά δίκτυα (π.χ. IPv4, IPv6, AppleTalk, ATM, OSI, …)
- Οι Γέφυρες δρομολογούν πλαίσια σύμφωνα με τις διευθύνσεις των πλαισίων. (Σε αντίθεση με τους δρομολογητές (routers) οι οποίοι δρομολογούν πακέτα σύμφωνα με τη διεύθυνση IP).
- Είναι επίσης επιθυμητό όπως οι γέφυρες λειτουργούν χωρίς ιδιαίτερη προσπάθεια διαμόρφωσης (configuration – plug and play).
 - Προς μεγάλη έκπληξη αυτό είναι εφικτό!
Γέφυρες (Bridges)
Γιατί Γέφυρες

- Καλύτερη οργάνωση σε λογικά τμήματα.
- Απόσταση μεταξύ κόμβων του ιδίου δικτύου. Μη αποδοτική σύνδεση μεταξύ απομακρυσμένων κόμβων.
- Η απόσταση μεταξύ κόμβων υπερβαίνει τα 2.5Km.
- Υποδιαίρεση της κυκλοφορίας (λιγότερες συγκρούσεις)
- Αξιοπιστία του συστήματος από «κακούς» κόμβους οι οποίοι εκπέμπουν συνεχώς
- Ασφάλεια. Ένα πλαίσιο μπορεί να διαβαστεί από οποιοδήποτε κόμβο (promiscuous mode)…
Λειτουργία Γεφυρών

- Διαβάζει την διεύθυνση παραλήπτη από τα πλαίσια από κάθε δίκτυο. Προωθεί τα πλαίσια στο δίκτυο στο οποίο βρίσκεται ο παραλήπτης.
- Εάν δεν ξέρει που βρίσκεται ο παραλήπτης, τότε προωθεί το πλαίσιο σε όλα τα δίκτυα εκτός από το δίκτυο από όπου προήλθε.
- Κτίζει δυναμικά το πίνακα δρομολόγησης (routing table) διαβάζοντας επίσης το διεύθυνση του αποστολέα.