Lecture 5

Neuromuscular Physiology
(240-249, 253-267, 270-286, 288-297)

Excluded: muscle length, tension, contraction and velocity, phosphorylation of myosin

Somatic Nervous System

- Consists of axons of motor neurons
 - Originates in spinal cord or brain stem and end on skeletal muscle
- Motor neuron releases neurotransmitter, ACh
 - Stimulates muscle contraction
- Motor neurons = final common pathway
 - Various regions of CNS exert control over skeletal muscle activity
 - Spinal cord, motor regions of cortex, basal nuclei, cerebellum, and brain stem
- Pathologies
 - Polio virus destroys the cell bodies of motor neurons
 - Amyotrophic Lateral Sclerosis (ALS)
 - A.k.a. Lou Gehrig’s Disease
 - Most common motor neuron disease
 - Gradual degeneration of motor neurons
 - Unknown cause

Muscle

- Comprises largest group of tissues in body
 - Skeletal (30-40% BW), smooth and cardiac (10% BW)
- Controlled muscle contraction allows
 - Purposeful movement of the whole body or parts of the body
 - Manipulation of external objects
 - Propulsion of contents through various hollow internal organs
 - Emptying of contents of certain organs to external environment
- Three types of muscle
 - Skeletal muscle
 - Make up muscular system
 - Cardiac muscle
 - Found only in the heart
 - Smooth muscle
 - Appears throughout the body systems as components of hollow organs and tubes
- Classified in two different ways
 - Striated or unstriated
 - Voluntary or involuntary
Structure of Skeletal Muscle

- Muscle consists of a number of muscle fibers lying parallel to one another and held together by connective tissue.
- Single skeletal muscle cell is known as a muscle fiber.
 - Multinucleated.
 - Large, elongated, and cylindrically shaped.
 - Fibers usually extend the entire length of muscle.

Neuromuscular Junction

- Axon terminal of motor neuron forms neuromuscular junction with a single muscle cell:
 - Terminal button (of neuron)
 - Motor End Plate (of muscle cell)

- Signals are passed between the nerve terminal and muscle fiber by means of neurotransmitter, ACh:
 - AP in motor neuron reaches terminal.
 - Voltage-gated Ca^{2+} channels open.
 - ACh is released by exocytosis.
 - ACh diffuses across the space and binds to receptor sites on motor end plate of muscle cell membrane.
 - Binding triggers opening of cation channels in motor end plate.
 - N\textsubscript{a}^{+} movements (larger than K\textsubscript{+} movements) depolarize motor end plate, producing end-plate potential.
 - Local current flow between depolarized end plate and adjacent muscle cell membrane brings adjacent areas to threshold.
 - Action potential is initiated and propagated throughout muscle fiber.

- Acetylcholinesterase:
 - On the chemically-gated cation channels of the end plate.
 - Inactivates ACh (as ACh molecules attaches and detaches from the receptors).
 - Ends end-plate potential and the action potential.
 - Ensures prompt termination of contraction.
Neuromuscular Junction

- Neuromuscular junction is vulnerable to chemical agents and diseases
 - Black widow spider venom
 - Causes explosive release of ACh
 - Prolonged depolarization keeps Na⁺ channels at inactive state
 - Botulism toxin
 - From food infected with Clostridium Botulinum → Botulism
 - Blocks release of ACh
 - Respiratory failure from diaphragm paralysis
 - Curare
 - Poisonous arrowheads
 - Binds at ACh receptor sites but has no activity and is not degraded
 - Organophosphates
 - Pesticide and military nerve gases
 - Prevent inactivation of Ach by inhibiting AChE
 - Effect similar to Black widow spider venom
 - Myasthenia gravis inactivates ACh receptor sites
 - Autoimmune condition (Antibodies against ACh receptors)
 - ACh is degraded before it can act.
 - Antidote is neostigmine (inhibits AChE and prolongs ACh action)

Structure of Skeletal Muscle

- **Titin**
 - Giant, highly elastic protein
 - Largest protein in body
 - Extends in both directions from along length of thick filament to Z lines at opposite ends of sarcomere
 - Two important roles:
 - Helps stabilize position of thick filaments in relation to thin filaments
 - Greatly augments muscle’s elasticity by acting like a spring

- **Myofibrils**
 - Contractile elements of muscle fiber
 - Viewed microscopically myofibril displays alternating dark (the A bands) and light bands (the I bands) giving appearance of striations
 - Regular arrangement of thick and thin filaments
 - Thick filaments – myosin (protein)
 - Thin filaments – actin (protein)

- **Sarcomere**
 - Functional unit of skeletal muscle
 - Found between two Z lines
 - Z lines connect thin filaments of two adjoining sarcomeres

- **Myosin**
 - Component of thick filament
 - Several hundred of them
 - Protein molecule consisting of two identical subunits shaped somewhat like a golf club
 - Tail ends are intertwined around each other
 - Globular heads project out at one end
 - Tails oriented toward center of filament and globular heads protrude outward at regular intervals
 - Heads form cross bridges between thick and thin filaments
 - Cross bridge has two important sites critical to contractile process
 - An actin-binding site
 - A myosin ATPase (ATP-splitting) site

Structure of Skeletal Muscle

- **Titin**
 - Giant, highly elastic protein
 - Largest protein in body
 - Extends in both directions from along length of thick filament to Z lines at opposite ends of sarcomere
 - Two important roles:
 - Helps stabilize position of thick filaments in relation to thin filaments
 - Greatly augments muscle’s elasticity by acting like a spring

- **Myofibrils**
 - Contractile elements of muscle fiber
 - Viewed microscopically myofibril displays alternating dark (the A bands) and light bands (the I bands) giving appearance of striations
 - Regular arrangement of thick and thin filaments
 - Thick filaments – myosin (protein)
 - Thin filaments – actin (protein)

- **Sarcomere**
 - Functional unit of skeletal muscle
 - Found between two Z lines
 - Z lines connect thin filaments of two adjoining sarcomeres

- **Myosin**
 - Component of thick filament
 - Several hundred of them
 - Protein molecule consisting of two identical subunits shaped somewhat like a golf club
 - Tail ends are intertwined around each other
 - Globular heads project out at one end
 - Tails oriented toward center of filament and globular heads protrude outward at regular intervals
 - Heads form cross bridges between thick and thin filaments
 - Cross bridge has two important sites critical to contractile process
 - An actin-binding site
 - A myosin ATPase (ATP-splitting) site
Actin

- Primary structural component of thin filaments
- Spherical in shape
- Thin filament also has two other proteins
 - Tropomyosin and Troponin
- Each actin molecule has special binding site for attachment with myosin cross bridge
 - Binding results in contraction of muscle fiber
- Actin and myosin are often called contractile proteins. Neither actually contracts.
- Actin and myosin are not unique to muscle cells, but are more abundant and more highly organized in muscle cells.

Tropomyosin and Troponin

- Often called regulatory proteins
 - **Tropomyosin**
 - Thread-like molecules that lie end to end alongside groove of actin spiral
 - In this position, covers actin sites blocking interaction that leads to muscle contraction
 - **Troponin**
 - Made of three polypeptide units
 - One binds to tropomyosin
 - One binds to actin
 - One can bind with Ca$^{2+}$

Tropomyosin and Troponin

- **Troponin**
 - When not bound to Ca$^{2+}$, troponin stabilizes tropomyosin in blocking position over actin’s cross-bridge binding sites
 - When Ca$^{2+}$ binds to troponin, tropomyosin moves away from blocking position
 - With tropomyosin out of way, actin and myosin bind, interact at cross-bridges
 - Cross-bridge interaction between actin and myosin brings about muscle contraction by means of the sliding filament mechanism

Sliding Filament Mechanism

- Thin filaments on each side of sarcomere slide inward
 - Over stationary thick filaments
 - Toward center of A band
 - They pull Z lines closer together
- **Sarcomere shortens**
 - All sarcomeres throughout muscle fiber’s length shorten simultaneously
 - Contraction is accomplished by thin filaments from opposite sides of each sarcomere sliding closer together between thick filaments
- **Ca$^{2+}$ plays a key role**
 - Increase in Ca$^{2+}$ starts filament sliding
 - Decrease in Ca$^{2+}$ turns off sliding process
Power Stroke

- Activated cross bridge bends toward center of thick filament, "rowing" in thin filament to which it is attached
 - Sarcoplasmic reticulum releases Ca\(^{2+}\) into sarcoplasm
 - Myosin heads bind to actin
 - Myosin heads swivel toward center of sarcomere (power stroke)
 - ATP binds to myosin head and detaches it from actin
 - Hydrolysis of ATP transfers energy to myosin head and reorients it
- Energy expended in the form of ATP

Sarcoplasmic Reticulum

- Sarcoplasmic Reticulum (SR)
 - Modified endoplasmic reticulum
 - Consists of fine network of interconnected compartments that surround each myofibril
 - Not continuous but encircles myofibril throughout its length
 - Segments are wrapped around each A band and each I band
 - Ends of segments expand to form sacklike regions – lateral sacs (terminal cisternae)
- T tubules
 - Run perpendicularly from surface of muscle cell membrane into central portions of the muscle fiber
 - Since membrane is continuous with surface membrane – action potential on surface membrane also spreads down into T-tubule
 - Spread of action potential down a T tubule triggers release of Ca\(^{2+}\) from SR into cytosol

Release of Ca\(^{2+}\)

- Foot proteins
 - Cover the lateral sacs of the sarcoplasmic reticulum
 - Span the gap between the SR and T tubules as well as SR membrane
 - Half interlock ("zipped") with Dihydropyridine (DHP) receptors on T tubules
- Dihydropyridine (DHP) receptors
 - Voltage sensors
 - Depolarization from AP opens Ca\(^{2+}\) channels of attached foot proteins
 - Ca\(^{2+}\) release opens the remaining foot proteins
Sarcoplasmic Reticulum

- Relaxation - Reuptake of Ca²⁺
 - ACHE degrades ACh at the endplate
 - Electrical activity stops
 - On-going activity of Ca²⁺-ATPase pump returns the Ca²⁺ to the SR
 - Troponin-tropomyosin complex returns to blocking position
 - No interaction between actin and myosin
 - Muscle fiber passively relaxes

Excitation-Contraction Coupling

- Contractile activity
 - AP is very short (1-2 msec)
 - Contraction does not start until enough Ca²⁺ is released
 - Latent period
 - Contraction process requires time to complete
 - Contraction time (~50 msec)
 - Relaxation also requires time to complete
 - Relaxation time (~50 msec)

Skeletal Muscle Mechanics

- Muscle consists of groups of muscle fibers bundled together and attached to bones
 - Connective tissue covering muscle divides muscle internally into bundles
 - Connective tissue extends beyond ends of muscle to form tendons
 - Tendons attach muscle to bone

- Muscle Contraction
 - Contractions of whole muscle can be of varying strength
 - Twitch – Contraction of single muscle fiber from single AP
 - Brief, weak contraction
 - Produced from single action potential
 - Too short and too weak to be useful
 - Normally does not take place in body
 - Two primary factors which can be adjusted to accomplish gradation of whole-muscle tension
 - Number of muscle fibers contracting within a muscle
 - Tension developed by each contracting fiber
Motor Unit Recruitment

- **Motor unit**
 - One motor neuron and the muscle fibers it innervates
- **Number of muscle fibers varies among different motor units**
- **Number of muscle fibers per motor unit and number of motor units per muscle vary widely**
 - Muscles that produce precise, delicate movements contain fewer fibers per motor unit
 - Muscles performing powerful, coarsely controlled movement have larger number of fibers per motor unit
- **Asynchronous recruitment of motor units helps delay or prevent fatigue**
 - Muscle fibers which fatigue easily are recruited later
 - Can engage in endurance activities for a long time but can only deliver full force for brief periods of time

Factors Influencing Tension

- **Factors influencing extent to which tension can be developed**
 - Varying from contraction to contraction
 - Frequency of stimulation
 - Length of fiber at onset of contraction
 - Permanent or long term adaptation
 - Extent of fatigue
 - Thickness of fiber

Frequency of Stimulation

- **Twitch summation**
 - Individual twitches are summed
 - AP much sorter in time than contraction → Multiple APs can be delivered
 - Results from sustained elevation of cytosolic calcium
- **Tetanus**
 - Occurs if muscle fiber is stimulated so rapidly that it does not have a chance to relax between stimuli
 - Contraction is usually three to four times stronger than a single twitch
 - Do not confuse with the disease of the same name!

Lever Systems

- **Bones, muscles, and joints interact to form lever systems**
 - Bones function as levers
 - Joints function as fulcrums
 - Skeletal muscles provide force to move bones
 - Muscles usually exert more force than actual weight of load!
 - Advantages: higher speed, more distance
Skeletal Muscle Metabolism

• Contraction-Relaxation Steps Requiring ATP
 • Splitting of ATP by myosin ATPase provides energy for power stroke of cross bridge
 • Binding of fresh molecule of ATP to myosin lets bridge detach from actin filament at end of power stroke so cycle can be repeated
 • Active transport of Ca²⁺ back into sarcoplasmic reticulum during relaxation depends on energy derived from breakdown of ATP

• Energy Sources for Contraction
 • Transfer of high-energy phosphate from creatine phosphate to ADP
 • First energy storehouse tapped at onset of contractile activity
 • Oxidative phosphorylation (citric acid cycle and electron transport system)
 • Takes place within muscle mitochondria if sufficient O₂ is present
 • Glycolysis
 • Supports anaerobic or high-intensity exercise

• Transfer of high-energy phosphate from creatine phosphate to ADP
 • First energy storehouse tapped at onset of contractile activity
 • Reversible reaction
 • Stores Creatine Phosphate when ATP ↑
 • Contributes ATP when ATP ↓
 • Short duration or bursts of exercise
 • ~160g or 12.5 kcal
 • E.g. 100 m running

• Oxidative phosphorylation (citric acid cycle and electron transport system)
 • Takes place within muscle mitochondria
 • Moderate exercise
 • Sufficient O₂ must be present
 • Aerobic or endurance-type exercise
 • Deeper, faster breathing
 • Heart rate and contraction
 • Dilatation of blood vessels
 • Myoglobin
 • Similar to hemoglobin
 • Increase the transfer and store O₂ in muscle cells
 • Uses glucose or fatty acids
 • Glucose derived from muscle glycogen (chains of glucose) stores
 • Limited (~150g or 600 kcal)
 • Athletes can store more (2000 kcal for marathon runners)
 • Glucose derived from liver glycogen stores
 • Limited (~80-200g or 320-800 kcal)
 • Fatty acids derived from lipolysis
 • Plenty of these (~15kg or 135,000 kcal)

• Anaerobic or high-intensity exercise
 • Limit to the amount of O₂ that can be delivered
 • Respiratory and cardiac maxima
 • Muscle contraction constricts the blood vessels
 • Glycolysis
 • Supports anaerobic or high-intensity exercise
 • Less efficient but much faster than oxidative phosphorylation
 • Quickly depletes glycogen supplies
 • Lactic acid is produced
 • Soreness that occurs during the time (not after) intense exercise
 • Energy depletion and ↓ pH contribute to muscle fatigue
Skeletal Muscle Metabolism

<table>
<thead>
<tr>
<th>Sport</th>
<th>Oxidative</th>
<th>Glycolysis & Oxidative</th>
<th>Glycolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golf swing</td>
<td>95</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sprints</td>
<td>90</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Volleyball</td>
<td>80</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Gymnastics</td>
<td>80</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Tennis</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Basketball</td>
<td>60</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Soccer</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Skiing</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Rowing</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Distance running</td>
<td>10</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Swimming 1.5km</td>
<td>10</td>
<td>20</td>
<td>70</td>
</tr>
</tbody>
</table>

Table adapted from Fox E. L. et al, The Physiological Basis for Exercise and Sport, 1993

Fatigue

- **Contractile activity can not be sustained indefinitely → Fatigue**
- **Muscle Fatigue**
 - Occurs when exercising muscle can no longer respond to stimulation with same degree of contractile activity
 - Defense mechanism that protects muscle from reaching point at which it can no longer produce ATP
 - Underlying causes of muscle fatigue are unclear. Implicated
 - ADP increase (interferes with cross-bridges and Ca²⁺ uptake in the SR)
 - Lactic acid accumulation (may interfere with key enzymes in energy-producing pathways)
 - Accumulation of extracellular K⁺ (decrease in membrane potential)
 - Depletion of glycogen
- **Central Fatigue**
 - Occurs when CNS no longer adequately activates motor neurons supplying working muscles
 - Often psychologically based
 - Discomfort, lassitude or breathlessness
 - Mechanisms involved in central fatigue are poorly understood
- **Recovery**
 - Excess postexercise O₂ consumption (EPOC) helps
 - Restore Creatine Phosphate (five minutes)
 - Repairs ATP
 - Convert Lactic acid to pyruvate for oxidative ATP generation
 - Clear increased general O₂ demand because of higher temperature
 - Nutrient replenishment (1-2 days after a marathon)

Major Types of Muscle Fibers

- **Classified based on differences in speed of contraction and ATP hydrolysis and synthesis**
- **Three major types**
 - Slow-oxidative (type I) fibers
 - Low intensity contractions for long periods of time (e.g. back)
 - Fast-oxidative (type IIa) fibers
 - High intensity for medium periods (e.g. limbs)
 - Fast-glycolytic (type IIx) fibers
 - Rapid forceful movements (e.g. arms)
- **Fast fibers can contract ~ 10 x faster**
- **Oxidative fibers contain more mitochondria and myoglobin and have a richer blood supply → red meat**
Muscle Adaptation & Repair

- Muscle has a high degree of plasticity
 - Improvement of oxidative capacity
 - From regular aerobic exercise
 - Capillaries and mitochondria increase
 - Hypertrophy
 - From anaerobic high intensity exercise
 - Muscle fiber diameter increases (more actin and myosin)
 - Mainly fast-glycolytic fibers
- Testosterone and other steroids increase the synthesis of actin and myosin
 - Steroid abuse
- Fast muscle fibers are interconvertible
 - Oxidative ↔ glycolytic
 - But NOT fast ↔ slow
- Muscle atrophy
 - Disuse atrophy (e.g. space exploration)
 - Denervation atrophy (e.g. paralysis)
- Muscle has limited repair capabilities
 - Satellite cells can create a few myoblasts which fuse and create a few muscle fibers

Control of Motor Movement

- Input to motor-neurons
 - Input from afferent neurons
 - Input from primary motor cortex
- Input from afferent neurons
 - Usually through intervening interneurons
 - Responsible for spinal reflexes (e.g. withdrawal)
- Input from the primary motor cortex
 - Corticospinal motor system beginning from the motor cortex
 - Responsible for fine voluntary movement

- Afferent sensory neuron provide continuous feedback
- Three levels of control and coordination
 - The Segmental Level
 - The Projection Level
 - The Precommand Level

- Three levels of control and coordination
 - The Segmental Level
 - Spinal cord circuits including central pattern generators (CPGs)
Control of Motor Movement

- Three levels of control and coordination
 - The Projection Level
 - Premotor and Primary motor cortex
 - Plan and execute voluntary movements
 - Brain stem
 - Multineural reflexes
 - Regulation of involuntary control of body posture
 - The Precommand Level
 - Cerebellum
 - Coordination of movement
 - Maintenance of balance
 - Control of eye movements
 - Basal Nuclei
 - Inhibit muscle tone
 - Select and maintain purposeful motor activity while suppressing unwanted patterns of movement
 - Monitor and coordinate slow and sustained contractions

Muscle Receptors

- Receptors are necessary to plan and control complicated movement and balance
- The brain receives information from all muscles and joints in the body → proprioception
- Two types of muscle receptors
 - Muscle spindles
 - Monitor muscle length and tension
 - Golgi tendon organs
 - Monitor whole muscle tension

Muscle Spindles

- Consist of collections of specialized muscle fibers known as intrafusal fibers
 - Lie within spindle-shaped connective tissue capsules parallel to extrafusal fibers
 - Have contractile ends and a non-contractile central portion
- Each spindle has its own private nerve supply
 - Plays key role in stretch reflex
 - Efferent
 - Gamma motor neurons*
 - Afferent
 - Primary (annulospiral) endings (in the central portion)
 - Secondary (flower-spray) endings (at the end segments)

* Efferent neurons to extrafusal fibers are called alpha motor neurons
Muscle Receptors

- **Stretch Reflex**
 - Primary purpose
 - Resist tendency for passive stretch of extensor muscles by gravitational forces when person is standing upright
 - Classic example is patellar tendon, or knee-jerk reflex

Muscle Receptors

- **Coactivation of alpha and gamma motor neurons**
 - Spindle coactivation during muscle contraction
 - Spindle contracted to reduce length
 - With no coactivation
 - Slackened spindle
 - Not sensitive to stretch
 - Adjustment to keep muscle spindles sensitive to stretch

Muscle Receptors

- **Golgi Tendon Organs**
 - Provide necessary feedback for overall muscle tension
 - Integrates all factors which influence tension
 - Specialized nerve fibers embedded in the tendons
 - Stretch of tendons exerts force on nerve endings
 - Increase firing rate
 - Part of this information reaches conscious awareness
 - We are aware of tension (but not of length) of muscles

Muscle Receptors

- **Smooth Muscle**
 - Found in walls of hollow organs and tubes
 - No striations
 - Filaments do not form myofibrils
 - Not arranged in sarcomere pattern found in skeletal muscle
 - Spindle-shaped cells with single nucleus
 - Cells usually arranged in sheets within muscle
 - Cell has three types of filaments
 - Thick myosin filaments
 - Longer than those in skeletal muscle
 - Thin actin filaments
 - Contain tropomyosin but lack troponin
 - Filaments of intermediate size
 - Do not directly participate in contraction
 - Form part of cytoskeletal framework that supports cell shape
 - No sarcomeres
 - Have dense bodies containing same protein found in Z lines

Smooth Muscle
Smooth Muscle

- Two major types
 - Multiunit smooth muscle
 - Single-unit smooth muscle

Multiunit Smooth Muscle
- Neurogenic (nerve initiated)
- Consists of discrete units that function independently of one another
- Units must be separately stimulated by nerves to contract
- Found
 - In walls of large blood vessels
 - In large airways to lungs
 - In muscle of eye that adjusts lens for near or far vision
 - In iris of eye
 - At base of hair follicles

Single-unit Smooth Muscle
- Most smooth muscle
- Also called visceral smooth muscle
- Self-excitable (does not require nervous stimulation for contraction)
- Fibers become excited and contract as single unit
 - Cells electrically linked by gap junctions
 - Can also be described as a functional syncytium
- Contraction is slow and energy-efficient
 - Slow cross-bridge cycling
 - Cross-bridges “latch-on” the thin filaments → muscle maintains tension
 - Well suited for forming walls of distensible, hollow organs

Smooth Muscle Activity
- Gradation
 - All muscle fibers are contracting
 - Tension can be modified by varying the intracellular Ca²⁺
 - Ca²⁺ from the ECF (no SR)
- Tone
 - Many single-unit smooth muscle cells maintain a low level of tension (tone) even in the absence of APs
- Effect of autonomic nervous system
 - Typically innervated by both branches
 - Does not initiate APs but can modify the activity (rate and strength of contraction)
 - Enhancement or inhibition
 - Smooth muscle cells interact with more than one neurons
Smooth Muscle

- Smooth muscle activity
 - Tension-Length relationship
 - Increased tension when stretched
 - Can produce near-maximal tension at lengths 2.5 x the normal length
 - When stretched, smooth muscle has the ability to relax
 - These two properties are very important for hollow organs
 - Can accommodate varying volumes while being able to produce adequate contractile force

Cardiac Muscle

- Found only in walls of the heart
- Combines features of skeletal and smooth muscle
 - Striated
 - Cells are interconnected by gap junctions
 - Fibers are joined in branching network
 - Innervated by autonomic nervous system
- You will learn more about cardiac muscle in Cardiac Physiology

Next Lecture ...

No more of me!

Email: c pitris@ucy.ac.cy
Tel: 22892297
Fax: 22892260