ECE 370
Introduction to Biomedical Engineering

Principles of Biomechanics
Introduction

• What is Biomechanics?
 • The study of internal and external forces acting on the body segments, and the effects produced by these forces.
 • The principles of engineering, specifically mechanics, applied to human movement.
 • Kinesiology
 • Study of movement
 • Tends to focus on neuro musculoskeletal systems

• Problems studied by biomechanists
 1. How can human performance be enhanced?
 2. How can injuries be prevented?
 3. How can rehabilitation from injury be expedited?

• Areas of Biomechanics
 • Sports Biomechanics
 • Occupational Biomechanics
 • Clinical Biomechanics
Sports Biomechanics

• Understanding and applying mechanical concepts to
 • Assess the most optimal way to move the body
 • Achieve maximal performance
 • Minimize risk of injury
Occupational Biomechanics

- Design machines and the workplace to
 - Reduce repetitive stress on workers’ joints
 - Minimize injuries and long term problems
Clinical Biomechanics

• Analyze the mechanics of injured patients and provide feedback (biofeedback)
 • Restore normal function.
Isaac Newton’s “3 Laws of Motion”

• **The Law of Inertia**
 • An object at rest tends to stay at rest and an object in motion tends to stay in motion (unless an external force is applied eg. friction or gravity).

• **The Law of Acceleration**
 • A force applied to a body causes an acceleration proportional to the force, in the direction of the force, and inversely proportional to the body’s mass.
 • \(F=ma \)

• **The Law of Reaction**
 • For every action there is an equal and opposite reaction.
Types of Motion

• It is important to distinguish between two types of motion:

• Linear (or Translational) Motion
 • Movement in particular direction. Example: a sprinter accelerating down the track.

• Rotational Motion
 • Movement about an axis. The force does not act through the centre of mass, but rather is “off-centre,” and this results in rotation. Example: ice-skater’s spin.
 • Most human movements are rotational i.e. they take place around an axis
Centre of Mass (Gravity)

- The point on an object where its mass is balanced
 - The point where that body would balance on a very small base
 - A force applied through the CoM → Linear motion
 - A force applied at a distance to the CoM → Rotation or Angular motion

- Important concept when stability is important
Biomechanical Analysis

• Seven Principles of Biomechanical Analysis

• Grouped into 4 broad categories:
 1. stability,
 2. maximum effort,
 3. linear motion, and
 4. angular motion.
Biomechanical Analysis

• STABILITY

• Principle 1:
 • The stability increases
 • Lower center of mass
 • Larger base of support
 • Closer the center of mass to the base of support
 • Greater mass
 • Examples:
 • Sumo wrestling
 • Wrestling
 • Gymnastics
 • Is this position stable? Why?
Unstable Balance

• Sometimes athletes need to be balanced but ready to move quickly i.e. unstable

• Examples
 • Sprint start
 • Receiving serve in tennis
 • Swim start
 • What makes this unstable?
Biomechanical Analysis

• MAXIMUM EFFORT

• Principle 2:
 • The production of maximum force requires the use of all possible joint movements that contribute to the task’s objective.
 • Examples:
 • Bench press
 • Sprint start
Biomechanical Analysis

- **MAXIMUM EFFORT**

- **Principle 3:**
 - The production of *maximum velocity* requires the use of joints in order
 - From largest to smallest.
 - Examples:
 - Pitch a baseball
 - Hitting a golf ball
Biomechanical Analysis

• LINEAR MOTION

• Principle 4:
 • The greater the applied impulse, the greater the increase in velocity.
 • $a = \frac{F}{m}$
 • Range of Motion (ROM) important
 • Example:
 • Spiking a volleyball
Biomechanical Analysis

• LINEAR MOTION

• Principle 5:
 • Movement usually occurs in the direction opposite that of the applied force.
 • Affected by gravity and other forces
 • Examples:
 • Basketball
 • Kicking
• **ANGULAR MOTION**

• **Principle 6:**

 • Angular motion is produced by the application of a force acting at some distance from an axis, that is, by torque.

 • Torque (or moment)

 • \(\tau = r \times F = |r||F|\sin(\theta) \)

 • Example:

 • Diving
Levers

<table>
<thead>
<tr>
<th>Class</th>
<th>Illustration</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>The fulcrum lies between the effort and the resistance</td>
<td>Less force</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See saw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crowbar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hammer pulling out a nail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>The resistance lies between the fulcrum and the point of effort</td>
<td>Less force</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheelbarrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opening a door by the handle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rowing a boat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>The effort lies between the resistance and the fulcrum</td>
<td>More force, more speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biceps curl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Most limbs of the body</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biomechanical Analysis

• **ANGULAR MOTION**

 • ** Principle 7:**
 • The principle of conservation of angular momentum
 • Angular momentum is constant when an athlete or object is free in the air
 • Once an athlete is airborne, he or she will travel with constant angular momentum.

• **Linear motion**
 • Force moves a body
 • \(F = ma \)
 • If no force is applied, momentum is conserved
 • \(p = m v \)

• **Angular motion**
 • Torque causes a body to spin
 • \(\tau = F \times r = I \alpha \)
 • \(\alpha \): rotational acceleration \((\Delta \omega/\Delta t)\)
 • \(I \): rotational inertia, or moment of inertia
 • \(I \propto m r^2 \)
 • If no torque is applied, angular momentum is conserved
 • \(L = I \omega \propto mr^2 \omega \)
Examples of Conservation of Momentum

• Ice-Skating
 • The ice-skater begins to spin with arms spread apart then suddenly brings them closer to the body.
 • The skater’s spin (angular velocity) increases.
 • Explanation
 • When a figure skater draws her arms and a leg inward, she reduces the distance between the axis of rotation and some of her mass → reduces her moment of inertia
 • Angular momentum is conserved → rotational velocity must increase to compensate.
Examples of Conservation of Momentum

• Diving
 • After leaving the high diving board, the diver curls tightly and then opens up just before entering the water.
 • By opening up before entry, the diver increases the moment of inertia \(\rightarrow\) slows down the angular velocity.
Examples of Conservation of Momentum

• Gymnastics
 • By opening up, the gymnast increases the moment of inertia (radius of rotation), thereby resulting in a decrease in angular velocity.
Conservation of Energy

• The conservation of energy principle
 • Energy can never be created or destroyed, but can only be converted from one form to another
Elements of Kinesiology

• Five Phases of a Sport Skill
 1. Preliminary Movements
 2. Backswing/Recovery
 3. Force Producing Movements
 4. Critical Instant
 5. Follow-Through

• Used to bring a skill down into smaller parts
 • Helps coaches to detect and correct errors
 • Key Points are “look fors” that coaches use to produce ideal mechanics / performance
Five Phases of a Sport Skill

Preliminary Movements

• **Key Points**
 • Pick a Target
 • Open stance
 • Hold Ball with Opposite Hand
 • Hold the Ball at Waist Height
 • Eye on the Ball
Five Phases of a Sport Skill

Backswing/Recovery

• Key Points
 • Eye on the ball
 • Maintain good posture
 • Large last step
 • Ankle locked
Five Phases of a Sport Skill

Force Producing Movements

- **Key Points**
 - Eye on the ball
 - Maintain good posture
 - Largest muscles to the smallest
 - Use arm for balance
 - Open the hips up
Five Phases of a Sport Skill

Critical Instant

• Key Points
 • Eye on the ball
 • Contact with hardest part of the foot
 • Lock your kicking foot upwards
 • Let ball fall below knee height
 • Lock your leg
Five Phases of a Sport Skill

Follow-Through

• **Key Points**
 • Be smooth and fluid
 • Foot carries on towards target
 • Eyes follow ball to target
Elements of Kinesiology

• Why aren’t there more robots walking on two legs?
 • Because it’s REALLY difficult!!!

• Dynamic Walking
 • Hundreds of specific and well coordinated movements
 • Almost all joints involved from head to toes
 • Every step involves not only pushing the body forward but also keeping balance
 • When we walk, is like loosing our balance and falling forward
 • Just before loosing our balance, we put one leg forward to support our body

• Running
 • It’s even more difficult since there are moments when both legs are airborne!
Honda Asimo

• The best biped robot