Νευροφυσιολογία και Αισθήσεις

Διάλεξη 16
Κίνητρα Συμπεριφοράς ή Υποκίνηση
(Motivation)

Introduction

• Types of behavior
 • Unconscious reflexes
 • Voluntary Movements
 • Motivation
 • Driving force on behavior
 • Analogy– ionic driving force dependent upon many factors
 • Probability and direction of behavior
 • Vary with the driving force needed to perform the behavior
The Hypothalamus, Homeostasis, And Motivated Behavior

- **Homeostasis**
 - Maintains the internal environment of the body within a narrow physiological range

- **Role of Hypothalamus**
 - Regulates body temperature, fluid balance, and energy balance

- **Three components of neuronal response**
 - Humoral response
 - Visceromotor response
 - Somatic motor response

- **Examples of motivated behaviors**
 - Response when body is cold
 - Body shivers, blood shunted away from the body surface, urine production inhibited, body fat reserves - mobilized
 - **Lateral hypothalamus**
 - Initiation of motivation to actively seek or generate warmth
 - Example of motivated behavior
 - Eating

The Long-term Regulation of Feeding Behavior

- **Energy Balance**
 - Prandial state
 - Energy Storage → Glycogen and triglycerides
 - Anabolism and Catabolism

- **Body Fat and Food Consumption**
 - Hormones and the hypothalamus
 - Lateral hypothalamus
 - Reduce hormone levels released from fat cells → Incite feeding behavior
 - Detection neurons concentrated in the periventricular zone
 - Lipostatic hypothesis
 - Leptin
 - Regulates body mass
 - Decreases appetite
 - Increases energy expenditure
 - Leptin depletion
 - Incites adaptive responses to fight starvation
The Long-term Regulation of Feeding Behavior

• The Hypothalamus and Feeding
 • Anorexia
 • Severely diminished appetite for food
 • Obesity
 • Overeating caused by bilateral lesions in ventromedial hypothalamus
 • Lateral hypothalamic syndrome
 • Ventromedial hypothalamic syndrome

The Effects of Elevated Leptin Levels on the Hypothalamus

• Arcuate nucleus
 • Located at the base of the third ventricle
• Activation of arcuate neurons that release αMSH and CART peptides
 • Anorectic peptides - diminish appetite
 • Project to regions that orchestrate coordinated response of humoral, visceromotor, and somatic responses
 • Paraventricular nucleus (humoral response)
 • Intermediolateral gray matter of spinal cord
 • Lateral hypothalamus
The Long-term Regulation of Feeding Behavior

- **The Effects of Decreased Leptin Levels on the Hypothalamus**
 - Activation of arcuate neurons that release NPY and AgRP
 - Effects on energy balance: Opposite to the effects of αMSH and CART
 - Orexigenic peptides—increase appetite
 - NPY and AgRP inhibit secretion of TSH and ACTH
 - Activate parasympathetic division of ANS
 - Stimulate feeding behavior

- **The Control of Feeding by Lateral Hypothalamic Peptides**
 - Lateral hypothalamus: Motivation to eat
 - Electrical stimulation: Triggers feeding behavior in satiated animals
 - Neurons intrinsic to lateral hypothalamus; Axons passing through the lateral hypothalamus
 - Innervates most of cortex
 - MCH: Peptide neurotransmitter
 - Informs cortex about leptin levels
 - Motivates the search for food

- **Summary: The Effects of Elevated/Decreased Leptin Levels on the Hypothalamus**
 - A rise in leptin levels
 - Increases αMSH and CART in arcuate neurons → inhibit feeding behavior and decrease metabolism
 - A fall in leptin levels
 - Increases NPY and AgRP in arcuate and MCH neurons in lateral hypothalamus → stimulates feeding behavior and increases metabolism
The Short-Term Regulation of Feeding Behavior

• Motivation to eat—depends on
 • Social factors
 • Time and quantity of last meal
 • Ghrelin
 • Secreted from the stomach ➔ arcuate nucleus
 • Causes sense of hunger

• Appetite, Eating, Digestion, and Satiety
 • 3 phases of eating
 • Cephalic (sight and smell)
 • Gastric (chew and swallow)
 • Substrate (nutrients begin to be absorbed)
 • Satiety signals
 • Gastric Distension
 • Vagus nerve ➔ solitary nucleus
 (also input from taste buds)
 • Cholecystokinin
 • Enteric nervus system ➔ vagus nerve
 • Insulin
 • Vagus ➔ Pancreas ➔ Insuline ➔ arcuate nucleus

Why Do We Eat?

• Motivations in psychological terms
 • Liking: Hedonic
 • Wanting: Drive reduction

• Reinforcement and Reward
 • Electrical self-stimulation
 • Experiments to identify sites of reinforcement
 • Effective sites for self-stimulation:
 • Trajectory of dopaminergic axons in the ventral tegmental area projecting to the forebrain
 • Drugs that block dopamine receptors
 • Reduce self-stimulation
Why Do We Eat?

• The Role of Dopamine in Motivation
 • Old belief
 • Dopamine projection served hedonic reward
 • New understanding
 • Dopamine-depleted animals “like” food but “do not want” food
 • Lack motivation to seek food, but enjoy it when available
 • Stimulation of the dopamine axons
 • Craving for food without increasing the hedonic impact

• Serotonin, Food, and Mood
 • Serotonin as a neurotransmitter
 • Serotonin levels
 • Low: Postabsorptive period
 • Rise: In anticipation of food
 • Spike: During meals
 • Mood elevation
 • Rise in blood tryptophan and brain serotonin
 • Elevated also from foods high in tryptophan (e.g. carbs, chocolate)
 • Drugs that elevate serotonin levels
 • Example: Dexfenfluramine (Redux)
 • Disorders
 • Anorexia nervosa; Bulimia nervosa
 • Both often accompanied by depression
 • Treatment
 • Antidepressant drugs—elevate brain serotonin levels
 • Example: Fluoxetine (“Prozac”)
Other Motivated Behaviors

• **Drinking**
 - **Volumetric thirst**
 - Thirst triggered by hypovolemia
 - Hypovolemia
 - Decrease in blood volume
 - **Triggers**
 - Decreased flow in kidneys \rightarrow angiotensin from liver
 - Decreased blood pressure \rightarrow mechanoreceptors
 - **Vasopressin: Antidiuretic hormone or ADH**
 - Acts on kidneys to increase water retention
 - Inhibit urine production

Other Motivated Behaviors

• **Drinking**
 - **Osmometric thirst**
 - **Hypertonicity**
 - Increase in the concentration of dissolved substances in the blood
 - **OVLT= vascular organ of the lamina terminalis**
 - **Role of OVLT neurons**
 - Excite magnocellular neurosecretory cells
 - Vasopressin
 - Stimulate osmometric thirst
 - Drink water when thirsty
 - **Diabetes insipidus**
 - Lack of vasopressin
 - Loss of water in urine
 - Treatment—replace missing vasopressin
Other Motivated Behaviors

• Temperature Regulation
 • Cells fine-tuned for constant temperature—37°C (98.6°F)
 • Neurons for temperature homeostasis
 • Clustered in anterior hypothalamus
 • Humoral and visceromotor responses
 • Neurons in the medial preoptic area of the hypothalamus
 • Somatic motor (behavioral) responses
 • Neurons in the medial preoptic area of the hypothalamus
 • Visceromotor response: Goosebumps
 • Involuntary somatic motor response
 • Shivering, seeking warmth
 • Rise in temperature: Metabolism slowed by reducing TSH release

• Don’t worry, you are not ruled by your hormones
 • Humans can exert cognitive control
Conclusion

• Overview of motor systems
 • Addressed “how” questions of behavior
 • E.g., How is movement initiated?

• Overview of motivation systems
 • Addresses “why” questions of behavior
 • E.g., Why do we drink when dehydrated?

• The important discovery of a neural basis for feeding behavior
 • Allows us to frame new questions that will impact how we view our own behaviors

Επόμενη Διάλεξη ...

Διάλεξη 17
Το Σεξ και ο Εγκέφαλος
(Sex and the Brain)