Endoscopic Imaging
History of Endoscopy

• 400 BC: Hippocrates observes the anus using a speculum

• The first real endoscope that was developed was made by Phillip Bozzini in 1805 to examine the urethra, the bladder and vagina.
History of Endoscopy

• 1867 Desormeaux used an open tube to examine the genitourinary tract

• Adolf Kussmaul in 1868 used a straight rigid metal tube over a flexible obturator to perform the first gastroscopy.
History of Endoscopy

• Building on the work of others, Rudolph Schindler constructed the first practical gastroscope in 1932.
History of Endoscopy

• In 1957 Basil Hirschowitz developed his prototype fiberscope.
Endoscopy

- **Endoscopy**
 - A minimally invasive diagnostic medical procedure
 - The examination of internal body cavities using a specialized medical instrument called an endoscope.
 - Gives visual evidence of the problem (e.g. cancer, ulceration or inflammation)
 - Can be used to collect a sample of tissue or remove problematic tissue
 - Used to take photograph of the hollow internal organs
 - Performed under
 - Conscious sedation
 - Total Anesthesia
Endoscopy

- Physicians use endoscopy to diagnose, monitor, and surgically treat various medical problems.
- A surgeon introduces the endoscope into the body either through a body opening, such as the mouth or the anus, or through a small incision in the skin.
Endoscopy

• Risks of Endoscopy
 • Sedation
 • Damage to dentition
 • Aspiration
 • Perforation or hemorrhage after endoscopic dilatation
 • Perforation, infection, and aspiration after percutaneous endoscopic gastrostomy insertion
 • Perforation or hemorrhage after flexible sigmoidoscopy / colonoscopy with polypectomy
 • Pancreatitis, cholangitis, perforation or bleeding after ERCP
Endoscopy

• The endoscope
 • A slender, flexible or rigid tube
 • Equipped with lenses and a light source.
 • CCDs are used to feed a video to the monitor
 • Through the accessory channels of the endoscope water and air is supplied to wash and dry the surgical site.
 • Also has a channel through which surgeons can manipulate tiny instruments, such as forceps, surgical scissors, and suction devices.
 • A variety of instruments can be fitted to the endoscope for different purposes.
The Flexible Endoscope

- **Fiberoptic instruments**
 - Based on optical viewing bundles
 - 2–3·mm in diameter and contains 20,000–40,000 fine glass fibers, each close to 10·μm in diameter
 - Each individual glass fiber is coated with glass of a lower optical density to prevent leakage of light from within the fiber
 - The space between the fibers causes a dark ‘packing fraction’ → fine mesh frequently apparent in the fiberoptic image
- **Advantages**
 - Fiberoptic bundles are extremely flexible, and an image can be transmitted even when tied in a knot.
 - Small diameter
 - Direct view (monitor not necessary)
- **Limitations**
 - The image quality of a fiberoptic bundle, though excellent, can never equal that of a rigid lens system or a video-endoscope
 - Limited number of “pixels”
The Flexible Endoscope

- **Video-endoscopes**
 - Mechanically similar to fiber-endoscopes,
 - A CCD chip and supporting electronics mounted at the tip
 - To and fro wiring replacing the optical bundle
 - Further electronics and switches occupying the site of the ocular lens on the upper part of the control head.

- **Advantages**
 - Improved image quality
 - View through a monitor
 - Removing any need to hold the instrument close to the endoscopist's eye has hygienic advantages (avoidance of splash contamination)
 - Improved instrument design and handling techniques

- **Limitations**
 - No direct viewing
 - Can not be made < 5 mm
The Flexible Endoscope

- Parts of the endoscope
 - Connector Section
 - Control Section
 - Insertion Section
The Flexible Endoscope

• Control section
 • Held in the operator's left hand
 • Has two stacked angulation control knobs
 • direct up/down and left/right deflection of the endoscope tip.
 • Has air/water and suction valves
 • Has remote switches to modify or capture the video image.
 • Has entry port to the instrument channel(s) is (are)
 • Fiber optic instruments have an eyepiece located at the top of the control section for direct image viewing.
The Flexible Endoscope

• **Insertion Section**
 - The portion of the endoscope that is inserted into the patient
 - The length, diameter, and degree of stiffness of the insertion tube vary among models.
 - The insertion tube contains
 - One or two instrument channel(s)
 - One or two light guide bundles (incoherent fiber optic)
 - An air channel, a water channel
 - Either an image guide bundle or a CCD chip with wire
 - Connections, and angulation wires.
The Flexible Endoscope

• **Endoscopic Accessories**
 - Biopsy forceps
 - Graspers
 - Baskets
 - Injectors
 - Dilators
 - Knives
 - HF endo-therapy accessories
 - . . . too many types of accessories.
The Flexible Endoscope

• Connector section
 • A light guide,
 • An air-pipe
 • Electrical contacts compatible with the processor/light source.
 • Side connectors for a water container, suction, CO2, insertion tube venting
 • An S (safety)-cord connecting mount, which grounds the endoscope, reducing the electrical shock hazard to the operator.
The Rigid Endoscope

• A lens system transmitting the image to the viewer
 • Typically a relay lens system
 • Rod lenses provide for better image quality and light efficiency

• Different diameters and viewing angles
Flexible Endoscopy

- Depending on the body part, each type of endoscopy has its own special term, such as:
 - laryngoscopy (vocal cords)
 - bronchoscopy (lungs)
 - colonoscopy (colon)
 - Esophagoscopy (esophagus)
 - gastroscopy (Stomach)
 - Hysteroscopy (uterus)
 - etc
Bronchoscopy

A bronchoscope is used to view the airways and check for any abnormalities.
Esophagoscopy
Surgical or Rigid Endoscopy

- Laparoscopy
- Arthroscopy
- Endo-Urology
- Gynecology
- E.N.T-applications
- Proctoscopy
- And many other surgical applications (gastrectomy, neurosurgery, ...etc).
Arthroscopy can be used to repair a tear of the lateral meniscus of the knee. The arthroscope allows the surgeon to see and repair the tear inside the knee joint.
Urethrocytoscopcy
Laparoscopic Surgery

• Laparoscopy is minimal access surgery
 • Accomplish surgical therapeutic goals with minimal somatic and psychological trauma.

• A rigid endoscope is introduced through a sleeve into the peritoneal cavity.

• The abdomen inflated with carbon dioxide

• Further sleeves or ports are inserted to enable instrument access and their use for dissection.
Laparoscopic Surgery

• Examples
 • Laparoscopic cholecystectomy has become the standard of management of uncomplicated gallstone disease.

• With improved instruments and more experience it is likely that other advanced procedures, previously regarded as controversial, will also become fully accepted
 • E.g. laparoscopic colectomies for malignancy,
Benefits of Laparoscopic Surgery

• Smaller incision
• Improved cosmetics
• Reduced possibility of infection
• Reduced post op pain
• Reduced blood loss
• Return home quicker
• Return to work quicker!
Limitations of Laparoscopic Surgery

• Reliance on remote vision and operating
• Loss of tactile feedback
• Dependence on hand–eye coordination
• Difficulty with haemostasis
• Extraction of large specimens
• Reliance on new techniques
Da Vinci Surgical System

• Not really a robot!
 • Master-slave system – the surgeon directly initiates all the movements of the robotic instruments in real time

• The prototype was developed by Stanford Research Institute in 1980s, funded by US Army, to perform battlefield surgery remotely by a surgeon in the safe rear

• FDA approved in human operations in 2000
Da Vinci Surgical System

Imaging
- Double lenses laparoscope
- 3D, high definition, binocular view
- 10-15X magnification

Dexterity
- Endowrist instruments have 6 degrees of freedom
- Filtering off hand tremor
- Scaling down movements 1-5X
Da Vinci Surgical System

• **DaVinci Offers**
 • Improved dexterity
 • Better control
 • Better precision
 • Improved ergonomics – decreased fatigue and strain

• **Advantages**
 • Reduced hospital stay
 • More high risk patients can be treated
 • Less staff required

• **Limitations**
 • Cost of equipment $1 million
 • Steep learning curve for surgeons
 • Doctors training on device felt hindered by lack of ability to feel the tissue they’re working on
 • Surgery with this system takes 40-50 minutes longer than standard procedure
Limitation of Fiberoptic Endoscopy

• Double Balloon (Push-and-Pull) Endoscopy
 • Fiberoptic method to visual the entire small bowel
 • Two balloons are inflated and deflated in sequence to move the endoscope through the bowel

• Advantages
 • Complete visualization of the entire small bowel to the terminal ileum
 • Can do therapeutic interventions
 • Allows for sampling/biopsying of small bowel mucosa
 • Allows for resection of polyps
 • Placement of stents or dilation of small bowel strictures

• Disadvantages
 • Technically difficult procedure
 • Very time consuming (Procedure can take > 3 hours)
 • Patient may need to be admitted to the hospital
 • Higher risk of small bowel perforation
 • Case reports of pancreatitis and intestinal necrosis
 • Reported incidents of aspiration and pneumonia
Capsule Endoscopy

- Capsule endoscopy was first used in humans in 1999.
- First publication on capsule endoscopy was published in Nature in 2000:
- Two major companies have capsule endoscopy products.
 - Given Imaging has the PillCam
 - Olympus has the EndoCapsule
- The latest pill camera
 - Sized at 26x11 mm
 - Capable of transmitting 50,000 color images during its traversal through the digestive system of patient.
Inside a Capsule Camera

1. Optical Dome
 - This shape results in easy orientation of the capsule axis along the central axis of small intestine and so helps propel the capsule forward easily.
 - The Optical Dome contains the Light Receiving Window.

2. Lens Holder
 - The Lens Holder is that part of the capsule which accommodates the lens. The lens is tightly fixed to the holder so that it doesn’t get dislocated anytime.

3. Lens
 - The Lens is an integral component of the capsule.
 - It is arranged behind the Light Receiving Window.
Inside a Capsule Camera

4. Illuminating LED’s
- Around the Lens & CMOS Image Sensor, four LED’s (Light Emitting Diodes) are present. These plural lighting devices are arranged in donut shape.

5. CMOS Image Sensor
- CMOS (Complementary Metal Oxide Semiconductor) Image Sensor is the most important part of the capsule. It is highly sensitive and produces very high quality images.
- It has 140° field of view and can detect objects as small as possible.
Inside a Capsule Camera

6. Battery
- Two batteries
- Silver Oxide primary batteries are used (Zinc/Alkaline Electrolyte/Silver Oxide). Such a battery has a even discharge voltage, disposable and doesn’t cause harm to the body.

7. ASIC Transmitter
- The ASIC (Application Specific Integrated Circuit) Transmitter is arranged behind the Batteries as shown. Two Transmitting Electrodes are connected to the outlines of the ASIC Transmitter.
- These electrodes are electrically isolated from each other.

8. Antennae
- As shown, the Antennae is arranged at the end of the capsule. It is enclosed in a dome shaped chamber.
How does Capsule Endoscopy Work?

- Capsule is swallowed by the patient like a conventional pill.
- It takes images as it is propelled forward by peristalsis.
- A wireless recorder, worn on a belt, receives the images transmitted by the pill.
- A computer workstation processes the data and produces a continuous still images.
Advantages of Capsule Endoscopy

- **Uses**
 - Crohn's Disease.
 - Malabsorption Disorders.
 - Tumors of the small intestine & Vascular Disorders.
 - Ulcerative Colitis
 - Medication Related To Small Bowel Injury.

- **Advantages**
 - Painless, no side affects or complications.
 - Miniature size, so can move easily through the digestive system.
 - Accurate, precise and effective.
 - Images taken are of high quality are sent almost instantaneously to the data recorder for storage.
 - Made of bio-compatible material, doesn’t cause any harm to the body.
Limitations of Capsule Endoscopy

• Anatomical Limitations
 • Slow Gastric/Intestinal Motility.
 • Narrowing or obstruction
 • Potentially obstructed views
 • Morbidly obese patients

• Technical limitations
 • Poorer quality of images as compared to Fiberoptic scopes
 • The position of the capsule can not be accurately controlled
 • Interpretation of results are very observer dependent
 • Findings may be of unknown significance or relevance.
 • Inability to biopsy or treat any pathology seen.

• Overcomes
 • Smaller devices
 • Bi-directional telemetry camera?