
Abstract: In this paper we assess the benefits of using
statistical techniques to ascertain the shareability of protection
channels when computing shared mesh restored lightpaths.
Current deterministic approaches require a detailed level of
information proportional to the number of active lightpaths,
and do not scale well as traffic demands and network grow.
With the proposed approach we show that less information,
independent of the amount of traffic demand, is sufficient to
determine the shareability of protection channels with
remarkable accuracy. Experiments also demonstrate that our
approach yields faster computation times with no significant
penalty in terms of capacity usage.

Index terms: Optical networks, Optical Switching, Mesh
Protection, Stochastic Algorithm, Performance Analysis.

A. INTRODUCTION

Dense Wavelength Division Multiplexed (DWDM) mesh
network infrastructures that route optical connections
(lightpaths) using intelligent optical cross-connects (OXCs)
have emerged as the technology of choice to implement next
generation data[1]. In these architectures a single piece of
equipment is capable of transferring tens of terabits per
second. This equipment is continuously exposed to
multifarious risks of breakdown, either due to human-
induced mishaps, or to equipment malfunctions. In order to
guarantee service persistence in such circumstances it is
common for a carrier to reserve spare bandwidth on
alternate paths, so that a service affected by a failure along
its primary lightpath can be rapidly restored using the
reserved bandwidth. Among the possible schemes for
provisioning backup paths, dedicated protection and mesh
restoration seem to be the most appropriate approaches in
the context of DWDM networks [2][3][4].

In dedicated protection, the lightpath provisioning
algorithm computes and establishes simultaneously the
primaries and their protection paths. During normal
operation mode, both paths carry the optical signal and the
egress selects the best copy of the two. The concept of
Shared Risk Group (SRG) was introduced to select the paths
so that they will not be affected by a single failure[5][6]. An
SRG expresses the relationship that associates optical lines
(or possibly other optical components) with a single failure.
It may consist of all the optical lines in a single fiber, or the
optical lines through all the fibers wrapped in the same
cable, or all the optical lines traversing the same conduit.
Since a fiber can traverse several conduits, an optical line
may belong to several SRGs. It suffices that a primary and
its backup path are SRG disjoint to ensure that at least one
path survives any single failure.

As in dedicated protection, shared mesh restored paths
are predefined, except that the cross-connections along the
paths are not created until a failure occurs. During normal
operation modes the spare optical lines reserved for
protection are not used. We refer to such channels as
reserved (for restoration) channels. Since the capacity is
only “soft reserved”, the same optical line can be shared to
protect multiple lightpaths. There is a condition though that
two backup lightpaths may share a reserved channel only if
their respective primaries are mutually Shared Risk Group
(SRG) disjoint, so that a failure does not interrupt both
primary paths. If that happened, there would be contention
for the reserved channel and at most only one of the two
lightpaths would be successfully restored. Two lightpaths,
or their protection, are said to be mutually compatible, if
they are not affected by the same failure. If not, they are
incompatible. Figure 1 (for normal mode) and Figure 2 (for
restoration mode) illustrate an example of mesh restoration.
The network consists of four client nodes (A to D) and two
demands (AB and CD) accommodated across an eight node
optical network (S to Z). The dashed lines represent
channels reserved for protection. Using the routing of Figure
1, demands AB and CD are compatible with respect to
SRG-failures and thus their protection share a single optical
line in link S-T, one less than would be required in
dedicated protection. Upon failure as depicted in Figure 2,
the egress and egress nodes of the disconnected paths (X
and Z) emit a request to the switches along the protection
paths (S and T) to establish the cross-connections for that
path. Once the cross-connections are established, each
ingress and egress node restores the connection to the new
path. This architecture requires fewer resources than in
dedicated protection, but the restoration involves more
processing to signal and establish the cross-connections
along the restoration path.

They are two policies to assign reserved channels to
restoration paths[7]: A failure dependent strategy assigns the
reserved channels in real time after failure occurrence on a
first-come first-serve basis depending on availability. A
proper spare channel-provisioning scheme reserves enough
channels so that all lightpaths can be restored for every type
of failure. A failure independent strategy assigns the
reserved channels at the time of lightpath provisioning prior
to failure occurrence. One advantage of the failure
independent strategy over the failure dependent is that
during lightpath restoration the switches on the protection
paths immediately and individually cross-connect to
predetermined channels, based uniquely on the identifier of
the lightpath being restored. For the scope of this study the
failure independent strategy is used.

Stochastic Approaches to Compute Shared Mesh Restored Lightpaths in Optical Network
Architectures

Eric Bouillet, Jean-François Labourdette, Georgios Ellinas, Ramu Ramamurthy, Sid Chaudhuri

Tellium, Inc
185 Route 36, Building E, West Long Branch 07764

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



C

A B

D
Primary for demand CD

Primary for demand AB

Cross-connections are not established

Optical line reserved for shared
protection of demands AB and CD

U W

TS

X Z

Y

V

Figure 1. Mesh Restoration, before failure

Link failure

Primary for demand AB is not affected

Cross-connections are established
after failure occurs

Optical line carries
protection of demands CD

C

A B

D

U W

TS

X Z

Y

V

Figure 2. Mesh Restoration, upon failure of fiber Y-Z

Now, consider the online problem of provisioning a
mesh-restored lightpath using a centralized Route
Computation Module (RCM.) Since this problem is proved
to be NP-complete if minimization of the total capacity
usage (working plus protection) is sought, a possible
approach is to enumerate a list of K minimum cost primary
paths and for every one of them compute the corresponding
minimum cost restoration path. The RCM then returns the
pair of paths with the lowest aggregated cost. The cost of a
pair is the cost of the channels along both paths, excluding
the cost of (preexisting) shareable reserved channels along
the backup path. Given a primary path, we compute the
minimum cost backup-path by: (i) setting the cost of the
fibers (SRGs) traversed by the primary path to ∞, (ii) setting
the cost of fibers with shareable channels to a constant ε«1,
(iii) run a shortest path algorithm using the modified fiber
cost metric. Step (i) and (ii) respectively ensure that primary
and backup paths are SRG-diverse, and that the minimum
cost backup path is found using shareable reserved channels
whenever possible. In the following we are interested in step
(ii), which consists of identifying shareable reserved
channels. We show in particular that the time-complexity of
this operation, if deterministic, is proportional to the total
number of reserved channels, and thus does not scale well
when the number of lightpaths established in the network
becomes large. We then present a stochastic approach to

execute this operation with a certain probability of accuracy.
We show that by trading a deterministic TRUE or FALSE
statement for a PERHAPS statement with a measurable
likelihood that PERHAPS is TRUE, the operation can be
made independent of the number of reserved channels. The
benefits of this substitution are: (1) reduction of the path
computation time and (2) reduction of the amount of
information necessary to compute the paths, with no penalty
or small penalty in terms of capacity efficiency.

Section B develops the complexity of the deterministic
approach to identify shareable channels. Section C describes
the details of the stochastic approach. Section D describes
an algorithm to compute mesh restored paths using the
stochastic approach. Section E compares the results for
realistic topologies using both stochastic and deterministic
based algorithms, and Section F concludes this paper.

B. TIME COMPLEXITY OF DETERMINISTIC APPROACH

In what follows, a list of SRGs protected by a given
reserved channel consists of all distinct SRGs traversed by
all the primary lightpaths whose respective protection paths
are assigned the reserved channel. Thus a reserved channel
can be reused to protect a primary path if no SRG traversed
by the primary path appears in the list of SRGs already
protected by the channel. We denote by h the average
primary path length expressed in number of edges, m the
number of edges in the network, and x the number of
reserved channels per edge. We also assume the typical case
where the average number of protected SRGs per reserved
channel is on the order of O(m). In order to identify
shareable reserved channels in the network the algorithm
must verify for each reserved channel in each edge that the
list of SRGs protected by the channel does not intersect with
the list of SRGs traversed by a primary path p.  Therefore,
the complexity of identifying all the edges with shareable
reserved channels in the network is O(hxm2). This
complexity is simplified to O(hxm) if each reserved channel
maintains a fixed length array in which each entry indicates
whether an SRG is used or not. The number of reserved
channels per edge is a function of g, the number of
lightpaths in the network, and can be approximated by
x=O(gh’/m), where h’ is the average length of a backup path
(h’≥h.) Substituting x, the complexity of this operation is
O(ghh’). Our primary concern here is the dependence of this
complexity on the number of lightpaths established in the
network. We thus propose to substitute this time consuming
deterministic approach for a stochastic approach whose
complexity remains constant with respect to the number of
lightpaths.

C. STOCHASTIC APPROACH

In what follows, we assume that the RCM has an up-to-
date knowledge of the state of the network. In particular this
information must include for each fiber (i) the number of
reserved channels in the fiber, and (ii) for every SRG in the
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network the number of reserved channels in the fiber that
the SRG appears in.

We now describe the technique used to quickly compute
the probability that a reserved channel is shareable with
respect to a given primary path and based on the
information available to the RCM. We will first introduce a
simple combinatorial problem, solve it, and show the
analogy between this problem and the one that we are
interested in.

1st. A Simple Problem of Combinations

The problem: We are given N bags tagged from 1 to N,
filled with marbles. Bag j (j∈{1, …, N}) contains nj
marbles. All marbles in any given bag have the same color,
but marbles in different bags have different colors, so that
there is a one-to-one mapping between bags and colors. We
are also given M bins tagged from 1 to M. We assume for
the moment that the bins have infinite capacity. Next we
empty the bags in the bins, so that not two marbles of the
same bag (or same color) fall in the same bin. The questions
are:
1. How many differentiable combinations of marbles to

bins are possible? Assume that we cannot distinguish
between two marbles of the same color.

2. Out of all combinations computed in (1), how many of
them have empty bins left?

3. What is the probability that at least one bin is empty?
Assume that probability of occurrence is the same for
all combinations computed in (1) and (2), i.e. the
marbles are uniformly distributed in the bins.

Bag 1 Bag N

...

...

Bin 1 Bin 2 Bin 3 Bin M

Figure 3. Bins and Bags problem

The answers:
In the following we use C(p,q)=q!/p!/(q-p)! to denote the

unordered combinations of p out of q elements.
1. First note that a solution exists iff M≥nj ∀j∈{1, …, N}.

The marble arrangement of each bag into the M bins is
not conditional to other bags’ arrangements. For each
bag j there are C(nj, M) possible ways to arrange the nj
marbles into an ordered set of M bins. There are thus
Q=∏j∈{1, …, N}

 C(nj, M) arrangements.
2. First note that if ∃j∈{1, …, N}/M=nj then there is no

such combination, and the answer is D=0. Note also
that if M>�jnj then we cannot fill all the bins and the
answer is D=Q. If M=1+maxj {nj}, the problem is
equivalent to (i), except that now arrangements are
confined to M-1 bins, the last bin being left empty.

They are thus D = C(M-1, M)∏j C(nj, M-1) possible
arrangements. Otherwise, if M>1+maxj {nj}, D=r(M-1),
where r(k) is the recursion over integers in
k∈{maxj {nj}, …, M-1} such that r(maxj {nj}-1)=0, and
r(k)={C(k, M)∏j C(nj, k)}-r(k-1). (See Appendix in
Section G)

3. P=D/Q, although the computation of D and Q may be
tedious. We thus show here a mean to approximate this
probability. First observe that the probability that at
least one bin is empty is complement to the probability
that all bins are non-empty. And the probability that a
bin is non-empty is the complement to the probability p
that this bin is empty. Although p is conditional to the
probability of other bins being empty we assume that it
is independent and identical for all bins. Therefore,
given a bin the probability p that the bin is empty is the
product of independent probabilities that all marbles of
each bag are in other bins, that is p=∏j(1-nj/M). Based
on our observations and assumption, the probability that
at least one bin is empty is P=1-(1-p)M=1-(1-∏j(1-
nj/M))M. The complexity of computing P (or its
complement 1-P) involves computing N products and
an Mth power. It is realizable in O(N+logM)≈O(N)
time.

2nd. Analogy with SRG arrangement into a set of reserved
channels

Assume that the M bins of the problem presented in 1st
are the reserved channels in a given fiber. And assume that
the N bags represent a list of N SRGs traversed by the
primary path for which a reserved channel is sought. The nj
marbles denote the number of times each SRG of the list is
protected (through pre-established paths) by the reserved
channel set. Evidently the same SRG cannot be protected
multiple times by the same reserved channel otherwise
contention would exist through their respective primaries if
the SRG fail. This restriction is expressed in the problem
formulation by the fact that two identical marbles (same
SRG) cannot fall into the same bin (reserved channel). Thus,
the problem above deals with computing the probability that
there is at least one shareable reserved channel, i.e. a
reserved channel that does not contain any of the N SRGs.
We have shown that this probability is approximated in
O(N) time, where N is the number of SRGs on the primary
path. Typically N is the average path length h. Therefore,
the complexity of identifying all the edges with shareable
reserved channels in the network is O(hm). This complexity
is to be compared with O(ghh’) of the deterministic
approach. Remember that in the computation of these
probabilities we have made two simplifying assumptions: (i)
the probability of a reserved channel being shareable is pair-
wise independent of other reserved channels, and (ii) SRGs
are uniformly distributed across reserved channels. The
effect of the first assumption is easy to quantify by way of
simulations (see Section E.) The effect of the second
assumption on the other hand is subtler because it depends
on the policy used for allocating reserved channels. For
instance a “First Fit” or “Max Fit” policy tends to pack
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(protect) more SRGs in some reserved channels than others
within the same fiber. As it turns out, a First Fit policy
increases the probability that a reserved channel is available
compared to a uniformly randomized allocation.

D. ALGORITHM

We describe here in details an algorithm that implements
the stochastic approach, and compare it with the equivalent
deterministic algorithm.

Given: a topology represented as a graph G(V,E) where
vertices represent optical cross-connects (OXC) and edges
represent fiber strands between OXCs. A network state
database, that indicates for each edge (fiber) the number of
channels available, the number of reserved channels, and the
number of times each SRG in the network is protected by a
reserved channel in that edge. The latter information is
stored into an array. The array’s indices correspond to SRGs
and each entry in the array counts the number of reserved
channel cross-connections that would occur in the edge if
the corresponding SRG fails.

Input: a pair of nodes A-Z

Output: a pair of bi-directional lightpaths from A to Z,
primary and secondary with minimum cost, excluding
restoration channels that are shared with pre-established
backup paths.

Algorithm:
1. Compute k-shortest paths. Sort the paths by length and

denominate them w1 to wk.
2. Set S=∅
3. For each shortest path wi, do:

(i) To each edge that shares a SRG with wi or has
neither available channel nor reserved channel,
assign infinite weight

(ii) For each edge without a reserved channel, set
weight to cost of edge

(iii) For each edge with reserved channel, set weight to
cost of edge times the probability that no reserved
channel is shareable (by way of the approach
presented earlier in section C of this document.)

(iv) Compute the shortest path si using the metric
defined in parts (i) to (iii), and set S←S+{wi,si}

4. Select the minimum cost path pair {wk,sk}∈S.
5. Use signaling to set-up the path. Reserved channels are

assigned locally, using some local optimization
algorithm for instance. If no path can be found in 4
return NO_PATH.

The algorithm is self-explanatory. It differs from the
deterministic algorithm only in step 3(iii). In the
deterministic algorithm the weight of an edge is set to the
edge cost times ε«1 if it contains a shareable reserved
channel and edge cost if it does not. In the stochastic
algorithm this weight is replaced by the cost of the edge
times the probability that no reserved channel is shareable in

the edge. Note that the deterministic approach requires
additional information to compute the routes. In particular it
needs to know whether each SRG is protected or not for
every reserved channel. Whereas in the stochastic approach,
only the number of times an SRG is protected in every edge
by any reserved channels of that edge needs to be known.
Finally, note that in step 5 we separated lightpath
provisioning from routing, and channel assignment is
performed in a distributed way after the lightpaths are
selected by the RCM. The objective of the RCM is to
compute the paths so that sharing is maximized during
channel assignment. Even though an edge may be
erroneously tagged as having a shareable channel during
path computation, the channel assignment procedure during
path setup will guarantee that they are no sharing violation.
In order to guarantee this, the scheme used for channel
assignment requires the same information as for the
deterministic approach, however this information can be
distributed across the nodes in the network: it suffices that
each node maintains a local database of all the reserved
channels terminating into it.

For the experiments presented in the next section we used
both the deterministic and stochastic implementations of the
algorithm. A great care was taken in optimizing the
deterministic implementation for speed. The stochastic code
was then derived from the deterministic code by modifying
step 3(iii) as described above.

E. EXPERIMENTS AND RESULTS

3rd. Accuracy and Distributions of Probability Functions

In the following we first measure the quality of the
estimated probability that an edge contains a shareable
reserved channel given the information on the number of
times each SRG traversed by the primary path is restored in
that edge. The experiment consists of simulating a large
number of arbitrary instances of the problem presented in
section 1st. For each instance of the problem, we simulate
several millions of random arrangements, and compute the
ratio of combinations with available reserved channels to
the total number of combinations (i.e. estimate 1st.3) We
then compare the difference between each experimental
probability and the corresponding exact and approximate
probabilities obtained by computation. The results are
shown in Figure 4 and 5. Figure 4 demonstrates the error
distribution of the estimate probabilities minus experimental
probabilities obtained over the range of problem instances.
We observe that the estimate probability has a tendency to
underestimate the experimental probability, but it is accurate
within 0.05 for 85% of the time, which is quite remarkable
given the simplicity of the computation. In comparison, the
simulation exhibits an accuracy within 0.01 of the exact
probability, and a closer look even indicates that 70% of the
time the difference is within 5x10-4 (Figure 5).
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Figure 5. Error distribution of exact sharing probability
versus simulation

4th. Comparison of Deterministic versus Stochastic Weight
Functions on Real Networks

In the next set of experiments we consider two scenarios
inspired from real life networks. NetA is a 100- node, 137-
edge network, with one unit of demand between every pair
of node (4950 demands). NetB is 220-node, 300-edge
network, also with one unit of demand between every pair
of node (24090 demands.) For the sake of simplicity we
assume here that every edge costs one unit of currency and
corresponds to one SRG (i.e. one SRG per edge and one
edge per SRG). We then route the demands on each network
using the deterministic and the stochastic algorithms. We
are interested here in the processing time to complete each
algorithm, and the quality of the solutions expressed in total
number of channels required (used for primaries and
reserved for backups.) Table 1 summarizes the results. For
NetA (resp. NetB) we observe that the stochastic approach
is 6.78 time faster (resp. 19.7 time faster) than the
deterministic approach while the penalty is only 2% (resp.
3%) more capacity. Also important is the amount of
information the RCM needs to compute the routes. The
stochastic based RCM only require one array per edge,
where each entry indicates the number of times the SRG is

protected in the edge by any reserved channel. For instance
in the NetB problem, they are 300 such arrays (one per
edge) of 300 entries each (one per SRG). For comparison.
The deterministic approach needs an array for each reserved
channel, where each entry corresponds to an SRG and
indicates whether the SRG is protected or not by the
reserved channel. In the solution of the NetB problems,
213052 of the channels are reserved for protection, thus
213052 arrays of 300 entries would be required in the
deterministic method.

Time to complete (sec.)
Determ. Stoch. Ratio.

NetA 156 23 6.78
NetB 9885 501 19.7

Usage (# channels)
Determ. Stoch. %

NetA 61312 62716 102%
NetB 520771 536343 103%

Table 1. Deterministic versus stochastic algorithm,
summary of results

Finally Figure 6 plots the distributions of sharing
probabilities as computed in step 3(iii) of the stochastic
algorithm during the provisioning of the demand in NetA
and NetB. The distributions are similar and show that70%
of the time (77% in NetB) it was possible to determine
almost certainly whether there would be a shareable
reserved channel (probability 0.0 that an edge does not have
shareable channel, 57% of the instances) or not (probability
1.0, 20% of the instances.)
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Figure 6. Distribution of Sharing Probabilities (NetA and
NetB)

F. CONCLUSION

In this paper we describe a stochastic approach to identify
shareable channels in a network when computing shared
mesh-restored lightpaths. We show that a summarized
information consisting of one fixed length array for every
edge is sufficient to compute the paths efficiently while
maximizing sharing opportunities. In contrast, the
deterministic approach needs one such array for every
protection channels, and thus does not scale when the
demand grows.

Our results demonstrate that the stochastic approach
completes the routing 6 to 20 times faster than the
deterministic approach for networks ranging from 100 to
200 nodes. Although the stochastic approach uses several
orders of magnitudes less information than what is
necessary for a deterministic approach, their solutions are
within 2% to 3% of each other in terms of capacity usage. In
fact our experiments indicate that 70% of the time this little
information is sufficient to determine with certainty whether
a reserved channel could be shared or not.

One possible and natural application of the stochastic
approach is for distributing the routing of shared mesh
restored lightpaths to the optical switches. The local
database of each switch may contain a summarized
information that is necessary to compute the routes using the
stochastic approach. Since this information is small, it can
easily by dissimenated.by link-state protocols, such as

OSPF. Using this information each demand’s ingress switch
can compute a path equivalent to a path computed by a
centralized deterministic algorithm with a complete view of
the network’s state.

G. APPENDIX

In reference to question 2 of the problem presented in 1st,
we show here how to compute the number of “non-
blocking” combinations.

Let r(maxj nj - 1)=0, and
r(k)={C(k, M)∏j C(nj, k)}-r(k-1).

Case 1: if M=maxi ni+1 then there is at most one
bin empty, and the answer is the number of solutions in the
remaining M-1 bins. Thus D = C(M-1,M)∏j C(nj, M-1) =
r(M-1), as expected.

Case 2: If M>maxi ni+1, then there may be up to
M-maxi ni empty bins. An incorrect answer would be to
treat Case 2 in the same way as we treat Case 1, that is to
remove 1 bin out of M, and compute all possible
combinations in the M-1 remaining bins. In order to
understand why this is incorrect, take the case
M=2+maxi {ni} and assume that we treat it as in Case 1.
There can be up to 2 empty bins, and all combinations that
have 2 empty bins will be counted twice, once for each of
the two bins that is removed. Figure 7 illustrates this. The
figure represents 3 bins, and one marble. If we remove one
bin at the time and count the number of possible ways to
place the marble in one of the two remaining bins, we
observe that some combinations are equivalent. For
instance, in combinations a) or b), c) or d) and e) or f) the
marble respectively occupies the same position, but a
different bin was removed. Therefore, although the
computation in Case 1 would indicate 6 possible
combinations, they are actually 3 of them. The argument
presented in this simple example can be easily extended to
cover the case of n marbles in M=n+2 bins. Observe now
that if the number of combinations in (M-m) bins is known,
then it is easy to derive from it the number of combinations
in (M-m+1) bins. Let r(M-m) denote the number of
combinations in (M-m) bins, then the number of possible
combinations in (M-m+1) bins is C(M-m+1,M)∏j C(nj, M-
m+1) minus the number of combinations in (M-m) bins that
would otherwise be counted twice, that is
r(M-m+1) = {C(M-m+1,M)∏j C(nj, M-m+1)}-r(M-m).
Replacing M-m+1 by k, one recognizes the recursion
presented in 1st part 2.
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Figure 7. Combinations of 1 marble into 2 bins (out of 3
bins)
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