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Abstract

In this work we introduce and describe optimal sets of survivable paths defined on an
undirected simple graph G. An optimal set of survivable paths in G corresponds to
a set of mesh-restored lightpaths in an optical network that minimizes the number
of optical channels. We present several fundamental properties of optimal sets of
survivable paths in G.
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1 Introduction

Mesh architecture has emerged as an important alternative for an efficient op-
tical network solution [5]. An optical mesh network consists of optical switches
interconnected by fiber links, and containing optical circuits called lightpaths.
In addition, each link contains a number of optical channels. A lightpath
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consumes exactly one optical channel on every link on its route. There are
different types of lightpaths. In particular, a mesh-restored lightpath has a
working route and a diversely routed backup route. The wavelength channels
on the working route of the mesh-restored lightpath are dedicated for that
lightpath and carry user traffic under normal operating conditions. The opti-
cal channels on the backup route for the mesh-restored lightpath are shared
among different mesh-restored lightpaths. Optical channels are shared in such
a way that every mesh-restored lightpath can recover from any single link fail-
ure on its working route. In this work we model a mesh optical network with
a simple undirected graph G that contains mesh-restored lightpaths only.

A survivable path between a pair of vertices in G is a pair of edge-disjoint
paths consisting of a working path and a protection path. Protection paths
share edges in such a manner as to provide guaranteed recovery upon the
failure of any single edge [1]. An optimal set of survivable paths in G
corresponds to a set of mesh-restored lightpaths in an optical network that
minimizes the number of optical channels. Hence, it is a practical and impor-
tant entity because it corresponds to the optimal routing and network design
problem in the real world, which is NP-Complete [3, 4].

We introduce the following assumptions and definitions to demonstrate
the properties of the optimal sets of survivable paths. Throughout the paper
we assume the cost of all edges in G to be equal. A 2-edge-connected graph
G is k-optimal if for any combination of paths defined between end-vertices
of distance not less than k£ in G, there exists a corresponding optimal set
of survivable paths defined between the same end-vertices with all shortest
working paths. We call two survivable paths distinct if they are not defined
for the same pair of end-vertices. If G is Hamiltonian, then C(G) denotes a
Hamiltonian cycle in G. A survivable path is incident to a vertex if that vertex
is one of the end-vertices of that survivable path.

Let Hg be a graph derived from G as follows. Graph Hg consists of the
same set of vertices as graph G, and in addition consists of edges between
pairs of vertices corresponding to pairs of end-vertices of survivable paths in
G. Define S(G) to be a subgraph of G consisting of all edges of an optimal set of
survivable paths connecting end-vertices of survivable paths in G. Let G(V,E)
be a graph on V(G) vertices and E(G) edges. Let S(G) be a complement of
S(G) in respect to G, (i.e., V(S(G)) = V(S(G)), each edge e € E(S(Q)) is
such that e € E(S(G)),and e € E(G)). If S(G) is connected then let T(G) be
a spanning tree of S(G).



2 Properties of Optimal Sets of Survivable Paths

Based on the above definitions, we present the following fundamental proper-
ties of the optimal sets of survivable paths, which have been proven in [2]. In
particular, Theorem 2.1 represents the main result of this work.

Theorem 2.1 Let G be a 2-edge-connected graph with m survivable paths de-
fined between k (m>k) pairs of adjacent vertices. Then there exists an optimal
set of survivable paths that contains k distinct and shortest working paths.

The following corollary follows directly from Theorem 2.1:

Corollary 2.2 Let G be a 2-edge-connected graph with every survivable path
defined between adjacent vertices and at most one survivable path defined for
any pair of vertices. Then there exists an optimal set of survivable paths that
contains every shortest working path.

Theorem 2.3 Let G be a 2-edge-connected graph having pairwise diverse
shortest working paths in an optimal set of survivable paths. Let S(G) be
a connected spanning subgraph of G induced by the pairwise diverse shortest
working paths and let Hg be a connected graph . Then there exists an optimal
set of survivable paths consisting of pairwise diverse shortest working paths
and every protection path lying on a single spanning tree T(G).

Note, Theorems 2.1, 2.3, and Corollary 2.2 hold for 2-connected graphs as
well.

Theorem 2.4 Let G be a Hamiltonian graph with at most one survivable path
defined over any pair of adjacent vertices. Let S(G) be a disconnected graph,
and let Hg be a connected graph. Then there exists an optimal set of survivable
paths consisting of every shortest working path and every protection path lying
on a single Hamiltonian cycle C(G).

The following Corollary follows from Theorem 2.4:

Corollary 2.5 Let G be a Hamiltonian graph with at most one survivable
path defined over adjacent pairs of vertices , and let Hg be a connected graph.
Then there exists an optimal set of survivable paths consisting of pairwise
diverse shortest working paths and every protection path lying either on a
single spanning tree T(G) or on a single Hamiltonian cycle C(G).

Theorem 2.6 Let G be a Hamiltonian graph having pairwise diverse shortest
paths with a distance of < 2 corresponding to survivable paths defined in G, and
let Hg be a connected graph . Then there exists an optimal set of survivable



paths consisting of pairwise diverse shortest working paths and every protection
path lying either on a single spanning tree of G or on a single Hamiltonian

cycle C(G).

To present Theorem 2.7 we introduce additional definitions. Eet Ci? Cy, .., C;
be connected components of Hy. Let P; be a spanning tree of C; if C; is con-
nected, or a Hamiltonian cycle on vertices V' (C;) if C; is disconnected.

Theorem 2.7 Let K, be a complete graph of order n > 2 with k survivable
paths defined between k distinct pairs of vertices. Let Cy, Cs, .., C; be connected
components of Hx. Then an optimal set of survivable paths consists of every
shortest working path and all protection paths lying on Py, Py, .., P;.

The following Corollary follows from Theorem 2.7:

Corollary 2.8 Let K be a complete graph of order > 2 with at most one
survivable path defined for any pair of adjacent vertices , and let Hx be a graph
consisting of components that are either triangles, squares, or a combination
of both. Then there exists an optimal set of survivable paths in which the
protection paths cover exactly the same set of edges as do the working paths.

It‘s easy to observe that the above condition (i.e., Hx being a graph con-
sisting of either triangles or squares) is also a necessary condition for this
interesting property. The cost of the solution for m survivable paths in this
case equals 2m.

Theorem 2.9 Let K,, be a complete graph of order n (n > 2) with at most
two survivable paths defined for any pair of vertices, and at most n-1 survivable
paths incident to any vertex. Let S(K) be a disconnected graph, and let Hy
be a connected graph. Then there exists an optimal set of survivable paths
consisting of every shortest working path and every protection path lying on a
single Hamiltonian cycle C(K).

Finally, we give two conditions for a graph to be 2-optimal.

Theorem 2.10 Let G=(V1,Vs,E) be a complete bipartite graph and let |V1],| V5]
> 2. Then G is 2-optimal.

Theorem 2.11 Let G=(V,E) be a 2-connected graph of order at least 7. Then
G is 2-optimal only if it contains a square.
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