Efficient (6, v)-Pattern-Matching
with Don’t Cares”

Yoan José Pinzén Ardila Manolis Christodoulakis
Costas S. Iliopoulos Manal Mohamed

King’s College London,
Department of Computer Science,

London WC2R 2LS, UK

E-mail: Yoan.Pinzon@kcl.ac.uk,
{manolis,csi,manal}@dcs.kcl.ac.uk

Abstract

Here we consider string matching problems that arise naturally in
applications to music retrieval. The J-Matching problem calculates,
for a given text T3, and a pattern P; ., on an alphabet of integers,
the list of all indices Zs = {1 < i < n—m+1: maxjL; |Pj—Tiy;1| <
0}. The y-Matching problem computes, for given T and P, the list
of all indices Z, = {1 <i <n—m+1:3"" |P; — Tiyj—1| < 7}
In this paper, we extend the current result on the different matching
problems to handle the presence of “don’t care” symbols. We present
efficient algorithms that calculate 75,7, and Z(5,,) = ZsNZ,, for pat-
tern P with occurrences of “don’t cares”.

Keywords: §-matching; y-matching; wildcard matching; music in-
formation retrieval.

1 Introduction

The string matching problem is to find all the occurrences of a given pat-
tern P, in a large text T1. ., both being sequences of characters drawn
from a finite character set . This problem is interesting as a fundamental
computer science problem and is a basic need of many applications, such

*A preliminary version of this paper appeared in the proceedings of the 16th Aus-
tralasian Workshop on Combinatorial Algorithms (AWOCA 2005).

as text retrieval, music retrieval, computational biology, data mining, net-
work security, among many others. Several of these applications require,
however, more sophisticated forms of searching, in the sense of extending
the basic paradigm of the pattern being a simple sequence of characters.

In this paper we are interested in music retrieval. A musical score can be
viewed as a string over an alphabet consisting of integers, representing the
set of notes in the chromatic or diatonic notation, or the set of intervals that
appear between notes (e.g. pitch may be represented as MIDI' numbers
and pitch intervals as number of semitones). One of the most common
uses of pattern matching in musical sequences, is for locating melodies
within songs. However, two songs with the same melody are usually made
of “similar” notes, but rarely exactly the same. One way to account for
similarity between closely related but non-identical musical strings is to
permit a difference of at most § units between each pattern character and
its corresponding text character in an occurrence. For an obvious example,
a C-minor 7 {60,63,67,70}, a C-major 7 {60,64,67,71} and a B-major 7
{59,63,66,70} sequence can be matched if a tolerance 6 = 1 is allowed in
the matching process (see Fig. 1). This type of similarity is also becoming
widely known as d-matching.

E) B) D Fi A
C G Cl |E| |G| |B B

0 o] o] ;
P A I] P 4 ¥] P A ¥ T]

60 63 67 70 60 64 67 71 59 63 66 70
C Eb G Bb ¢ E G B B D# Bt Af

(a) (b) ()

Figure 1: Representation of the (a) C-Minor 7, (b) C-Major 7 and (c)
B-Major 7 chords as monophonic scores, using the chromatic scale.

A different measure of similarity is what is known as the y-matching.
The v-matching again allows distances between the characters of the pat-
tern and their corresponding characters in the text, with the difference that
instead of bounding the distance between each individual pair of symbols, it
bounds the sum of the distances, throughout the length of the pattern, e.g.,
a C-minor 7 {60, 63,67,70}, and a B-major 7 {59, 63,66, 70} sequence can-
not be matched if a tolerance v = 2 is allowed in the matching process. On

Musical Instrument Digital Interface.

the contrary, a C-minor 7 {60,63,67,70}, and a C-major 7 {60,64,67,71}
can be matched if a tolerance v = 2 is allowed (see Fig. 1).

These two different measures of similarity, § and -, are usually combined
together, in what is commonly called (d,~)-matching, which is the most
generally accepted form of pattern matching for musical sequences. The
(0,v)-matching is defined as follows: the alphabet ¥ is assumed to be an
interval of integers, ¥ C Z. Apart from the pattern P and the text T,
two extra parameters, §,v € N, are given. The goal is to calculate the
set of all indices Z(5.) such that: Vi € Z(s.,) (1) maxj’y [Pj — Tjyj-1] <
J, and (2) Zj 11Pj — Titj—1] < . As an example, Fig. 2 shows the
results of searching for a pattern A = {63,67,70,63} in a bigger text T. If
(6,7) = (1,2) for example, then A is found ending at position 5 in T'. If
is increased by one then we would find another occurrence terminating at
position 16 in T

Pattern A Pattern B
01 02 03 04 01 02 03 04
63 67 70 63 63 *x 70 63
Eb G BbD# Eb % BbD#
Pattern A,B Pattern A,B
0=1,y=2 0=1,7=3 Text T
01| 02 03 04 05|06 07 08 09| 10 11 12| 13 14 15 16| 17 18 ‘19 20 21 22
A T pa— Ve e e+ v |
(ISP EEA NN JUS N G PP R LR P EL
J ST TR g T T o= #
60|63 66 70 63|59 64 71 64 73 72 73|64 66 70 62|74 76 77 78 66 70
C EbF#BbDZB E B EDb CC# E F#£Bb D D E F FAF4A#
Pattern B
o=1,=3 Text T
23 24 25 26 27 28| 29 30 31 32| 33 34 35 36 37 38 39 40 41 ,42 43 ,44
—# — i o o # P o » P n
i S I —— T S S S S S S N A i I |
EOINELETP Ry R A G 1 | 0 AN S A RS S Ry I
'J o n [i, v I o1 d
60 70 66 70 63 59163 77 70 62|70 76 74 74 76 77 74 76 77 78 66 78

CA#F#BbD# B Eb FBh DB E D D E F D E F FAFAF#

Figure 2: Illustration of some instances of the (4, v)-pattern matching prob-
lem to find a pattern with/without “don’t care” symbols.

In [3, 7] O(mn)-time solutions for ¢, 7, and (4, v)-matchings were given.
Two different approaches are taken. The first employs bitwise methods
known as Shift-And and Shift-Or [2]. By using the fact that calculations on
the bits in a single word can be performed in parallel, considerable speedups

are possible. In general, the time complexity of the best of these algorithms
is O(nm/w), where w is the number of bits in a computer word. The
second approach adapts classic exact matching algorithms to give the §-
Tuned-Boyer-Moore, §-Skip-Search, and 0-Mazimal-Shift algorithms. More
recently, using Fast Fourier Transform, [8] provided an O(|X|n(logm +
|X]))-time algorithm for the d-matching; also, [4] presented O(dnlogm)-
time algorithms for the 6 and (4,~)-matching. The same two groups of
researchers independently presented two O(n+/m log m)-time algorithms for
the y-matching.

In this paper, we extend the ¢, v and (, v)-matching to handle “don’t
care”? symbols. A “don’t care” symbol, is a symbol that matches every
other symbol, including itself. Therefore, in the context of d, v and (J,)-
matching, the distance of the “don’t care” symbol when aligned with any
other symbol, ought to be 0. For example, in Fig. 2, when looking for pat-
tern A = {63,67,70,63} and (d,v) = (1, 3), we fail to report an occurrence
ending at position 32. This occurrence could be detected if we used pattern
B = {63,*,70,63} instead.

The outline of the paper is as follows: Some preliminaries are described
in Section 2. In Section 3 we provide two alternative algorithms for the
d-matching with “don’t cares”: the first runs in O(|X|n(log m + |X|)) time,
and the second in O(dnlogm). An outline of the algorithm for the (4,)-
matching with “don’t cares” is given in Section 4. Then, a ~-matching
algorithm is presented in Section 5. A summary appears in Section 6.

2 Preliminaries

Throughout the paper, the alphabet 3 is assumed to be an interval of inte-
gers and considered to be ¥ = {1,2,...,|%|}. A text T =T}, is a string of
length n defined on X. Tj is used to denote the i-th element of T', and T, ; is
used as a notation for the substring I;T;1q - --T; of T, where 1 <17 < j < n.
Similarly, a pattern P = Py_,, is a string of length m defined on ¥ U {x},
where % is the “don’t care” symbol.

The “don’t care” matches every symbol including itself, that is, x = a
for each a € ¥ U {x}. A pattern P is said to occur in T at position i if
Pj:ﬂ+j_1,for1§j§m.

Let d,7 be two given numbers (8,7 € N). Then two patterns P* and P?
are said to be d-matched (denoted as P! =5 P?), if maxL, |P} — P?| <.
Additionally, P! and P? are said to be y-matched (denoted as P! =, P?),
ifZ;.nzl |P]-1—P]-2| <, where |x—a|=]a—x|=0,VaeXU{x}.

The 0, v and (0, vy)-Matching problems are defined as follows:

24.k.a. wildcard symbols

Definition 1 (§-Matching Problem) For a given text T, pattern P and
integer &, the §-Matching (L1-Matching) problem is to calculate the set, Is,
of all indices 1 < i < n such that if T; ;4+m—1 =s P, then i € Is. In other
words, Zs = {i: max7" [P; —T; 11| < d}.

Definition 2 (y-Matching Problem) For a given text T, pattern P and
integer v, the y-Matching (Loo-Matching) problem is to calculate the set,
Z,, of all indices 1 < i < n such that if T; j4m—1 = P, theni € Z,. In
other words, T, = {i: Y10, |P; = Ti 451 <7}

Definition 3 ((J,y)-Matching Problem) For a given text T, pattern P
and integers 0,7; the (3,7)-Matching problem is to calculate the set, Zs),
of all indices 1 < i <n such thatV i € Z(s -
(1) Ti,.ierfl =6 P, and (2) Ti,.ierfl =~ P.

The following definition will be central to the techniques used in this
paper.

Definition 4 (Convolution) Given two numerical strings X1, and Y1 m,
the convolution 71 ., = X ® Y is to calculate the inner products,

Zi:Z(XiJrj*l.ij) V].S’Lgn

j=1

In this paper, we will assume the RAM model of computation, which
allows arithmetic on log N bit numbers in O(1) time, where N is of the order
of the maximum problem size. For such model, the following theorem is
standard and crucial to our algorithms [6].

Theorem 1 Consider two numerical strings X1.,, and Y1, . Then, Z1 ., =
X ®Y can be computed accurately and efficiently in O(nlogm) time using
the Fast Fourier Transform (FFT).

3 o4-Matching with “Don’t Cares” Algorithm

Informally, the 5-Matching problem computes all indices ¢ such that the
maximum |P; — T; 4j_1] over all j’s is no larger than §. In the following
subsections, we present two different algorithms for the §-Matching problem
in the presence of “don’t cares”; we will assume that the “don’t cares”
appear only in the pattern P.

3.1 An O(|X|n(logm + |X|))-Time Algorithm

The main idea in our first algorithm is to encode the text and the pattern
in such a way that one convolution, and one linear time pass on the con-
volution’s output are sufficient to compute the desired output. A similar
idea is used in [8] to compute the L,,-matching for strings without “don’t
cares”. The main steps of the algorithm (Fig. 3) are as follows:

Step 1: Encode both the text T and the pattern P in such a way that
every symbol o € ¥ U {x} is represented by a binary string, over {0,1},
of length 2|X|. In particular, 0 = T; (1 < i < n) will be replaced by the
sequence c'(0) = c*(0)1,...,c"(0)2)x|, where

o i
C (U)] { 0, Otherwise fOI']_ <3< 2|2|
Additionally, every symbol o = P; (1 < i < m) will be replaced by
1, if] =ocand o 7& *
p J—)
lo); = { 0, otherwise

Note, that all “don’t-care” symbols (%), in the pattern P, are not rep-
resented by any bit in this sequence.

for 1 <j <2|%|.

Step 2: We compute the convolution between the encoded text, ¢!(T') =
ct(t1),...,ct(tn), and the encoded pattern, c?(P) = c?(p1),. .., P (pm)

R =cT)® cP(P).

Now, the i-th block of length 2|X|, in R, represents all the matches
that occur when the first symbol of P is aligned with the i-th symbol of
T. In particular, the j-th (1 < j < 2|X|) number of any such block of
2|X| numbers in R, will contain r, if and only if, the number of symbols,
Py, of P whose distance from the corresponding symbol, T;¢_1, of T is
Py —Tite—1 =j—1|%] — 1, is r. In other words, if we would renumber the
indices of the i-th block of 2|X| numbers, to run from —|X| to |X| — 1, then
the k-th (—|X| < k < |X| — 1) number within the i-th block, is the number
of symbols in P whose d-distance from the corresponding symbols in 7T is
k.

Since, we are only interested in those alignments, 4, for which all the
non-“don’t-care” symbols of P are in distance at most § from their corre-
sponding symbols in T, it suffices to parse the positions |X| —5 4+ 1 < j <
|24+ +1 of the i-th block of length 2|3|, in R: if the sum of the numbers
in this range equals the number of non-“don’t care” symbols in P, a match
has been found.

Step 3: Finally, we construct a string D1._,,—my1, over {0, 1}*, such that
D; (1 <i<n-—m+1)wil be 1, if and only if, P occurs at position i of
T'; otherwise it will be 0. The values of D are obtained as follows:

B q+5 o
Di:{lvlfzﬁq—éRU]m for 1 <i<n-—m+1,

0, otherwise

where ¢ = (2(1 — 1) + 1)|2| + 1, and m/ is the number of non-“don’t cares”
in P.

Algorithm 1: §-Matching algorithm — (first version)

Input: T, P, 6
Output: D

1. m'«—m

2 Ct(T)1”2‘Z|n ~—00...0

3 Cp(P)l“2|Z‘m «—00...0

4. fori=1ton do Ct(T)(Q(i—1)+1)\Z|+T7, — 1
5. fori=1tomdo

6 if Pi 75 * then Cp(P)2(i71)\E|+Pi —1
7 else m' —m' -1

8. R« ct(T)®c(P)

9 0

. 1.n < 00...

10. fori=1tondo

11. c—0

12. for j =S| —d+1to|E]+6+1doce c+ Ryi—1)s|+j
13. if ¢c=m' then D; «+ 1

14. return D

Figure 3: §-Matching Algorithm (Algorithm 1).

Example 1 (6-matching with “don’t cares”) Fig. 4 illustrates the com-
putation of ¢'(T), c’(P) and R for T = 3,5,4,2,3,5,3,2, P = 3,x,4 and
6 = 1. The pattern P occurs in T at positions 1,3,4 and 5.

It is easily seen that the algorithm computes the desired results, Zs =
{i : D; = 1}. The time complexity of this algorithm is derived from the
time to compute a convolution, and the size of the alphabet. In the first
step, a single pass through T" and P is required, spending O(|X]|) time per
input symbol. Then, the convolution of the encoded text and pattern of
size 2|X|n and 2|X|m, respectively, is computed, using the Fast Fourier
Transform, in O(|X|nlog |X|m) time. Finally, the parsing of the output of
the convolution is done in O(|X|n) time. Therefore, the overall time needed
for this algorithm is O(|X|nlog|X|m) = O(|Z|n(logm + |3))).

T=9pueyrg=4gCccg'ecvee

£ 0] 4 Pue (J)q2 ‘(.1),2 Jo uonyenduiod oYy Jo SUOIRISN[] fy 2IMSL]

1 2 3 4 5 6 7 8

T 3 5 4 2 3 5 3 2

. 12345123451234512345123451234512345123451234512345123451234512345123451234512345
c (T) (0000000100(0000000001/0000000010/0000001000/0000000100/0000000001[0000000100/0000001000)

1 2 3

P 3 * 4
123451234512345123451234512345
c?(P) (0010000000(0000000000/0001000000)

O —HANMFOONONO —HANMNHONDNO —HANMFHLOONONO —HAMHLOION0NO —HNMFHLOON0DNO
HAANMHOONOD ™ A== N NNNNNNNNND MMM FHHFHI IO OOOOILOOOOO

NN + 4+ + OO 4+ 4 4+ FONHO 1 4 4 + OFONHO 4 4 4+ + WFONHO 4 4 4+ OFOINHO 4 4 4 4
FTr e Lenood T e Lesnood T 01 ool T 1 Lenocods T 1 Lenwds T 01 1 Lo

R (0000020000/0001000100/0000101000/0000101000/0000110000/0001000100)
2 0, 2/ 2/ 2, 0/

1 2 3 4 5 6

3.2 An O(énlogm)-Time Algorithm

Based on ideas in [5], [4] presented an O(dnlogm)-time algorithm for the
d-Matching problem. A function that is zero when there is a match be-
tween two symbols and bounded away from zero otherwise, is constructed.
Standard properties of the even periodic functions and their discrete co-
sine transform [6] are used to achieve such goals. An even periodic function
fs5(x) that is equal to 2 for |z| < § is used to construct the desired function
as follows:
d(z —y) = (v —y)* = fs(z —y).

Note that d(z —y) = 0 if |x —y| < 6, and d(xz — y) > 1 otherwise.
Thus, to perform §-matching we need to compute Z;”:l d(P; —T;1j—1), for
1 <i<n-—m+1. Calculating each d(P; — T;+j_1) involves O(J) inner
products; see [4] for details.

In this subsection, we show how the same algorithm can be extended
to handle the occurrences of the “don’t cares” in the pattern. The main
steps of our algorithm (Fig. 5) are as follows:

Step 1: If J* = {1 < j < m | P; = }. Then, a new pattern PO g
created as follows:

o [0, ifjeJ*
Py = { P;, otherwise. (1)

Additionally, we compute D} = 7", d(Pj(O) —Tiyj_1), for 1 <4 <
n —m+ 1. Note that

D} = Y d(Tiyj1) + y_d(P; = Tij),

jeg 7
where J* = {1,...,m} — J*.
Step 2: The aim of this step is to compute for each position ¢ in T the

value > . 7. d(Tiy;j—1). To achieve this, a new pattern P is computed
as follows:

o [1, ifjeTs
P, { 0, otherwise. (2)

Additionally, a new text T” is computed as follows:
T/ = d(Ty) = T2 - (1))
Note that

5
fs(x) = Z arghi(z),
k=0

where
hi(x) = r(k) cos(xkm/d),k =0, ..., 0,

the coefficients are given as

4

o = Z thk(ac),

r=1-§

and (k) = 1/v/26 if k mod § = 0 and 7(k) = 1/v/3 otherwise [4].
Once P and T are obtained, the values Yjegr ATiyj-1), for 1 <
i <n—m+ 1, can be easily obtained as D? = T’ @ P,

2 _ - (1)
D} = PV T
j=1
Step 3: In this step the actual J-matching is computed as follows:
D; = D} — D?.
Observe that Zs can be calculated as follows:

I5={1§i§n—m+1IDi:Zd(Pj—Ti_i_j_l):O}.
T

Let us analyse the time complexity of our algorithm. In the first step,
the d-matching for text and pattern without “don’t cares” is computed in
O(dnlogm) time using the algorithm in [4]. All «ay, for a given §, can
computed in O(6?) time. Additional O(dn) time is needed to compute 7"
in the second step. The convolution in the second step is computed in
O(nlogm) time, using the Fast Fourier Transform. The remaining steps
require O(n+m) time. Therefore, the overall time needed for this algorithm
is O(dnlogm) time; which matches the best current running time of the
d-Matching algorithm for strings without “don’t cares”.

4 (4,7)-Matching with “Don’t Cares” Algo-
rithm

Recall that [4] presented an O(dn log m)-time algorithm for (4, y)-matching
without “don’t cares”. The algorithm follows the same method for the -
Matching algorithm. The only difference is the choice of the even periodic
function. A function f,(z) that is equal to |z|, for |z| < § is used to
calculate Z,.

10

Algorithm 2: §-Matching algorithm — (second version)

Input: T, P, 6

Output: D

1. fork=1tod do

2. ap «— 0

3. forx =1—46 to d do

4. ag — ag + x2hg(x)

5 fori=1tondo

6. sum < 0

7. for k =0 to § do sum «— sum + aihi(z)
8. T! — T? — sum

9. for j=1tomdo

10. if p; # % then P — P;; PV 0

11. else p; # x then Pj(o) «— 05 Pj(l) —1
12. fori=1ton—m+1doD} — Y7 dP” —Tip; 1)
13. D? T ®pPW

14. fori:lton—m—l—ldol)i:Dil—Di2

15. return D

Figure 5: §-Matching Algorithm (Algorithm 2).

Therefore, their algorithm can be modified in the same way as described
in Subsection 3.2, to handle the occurrences of the “don’t care” symbols in
the P, and obtain an O(dn logm)-time algorithm.

Once Zs and Z, are calculated, the set of locations Z(5) is easily iden-
tified as I(‘M) =1IsNZ,.

In the following section, we will present a y-Matching algorithm whose
running time is independent of .

5 ~-Matching with “Don’t Cares” Algorithm

For strings without “don’t cares”, two O(n+/mlogm)-time algorithms were
presented for the y-Matching (L;-Matching) problem [1, 4]. Both algo-
rithms use the Fast Fourier Transform, and follow the divide and conquer
approach. In this section, we will explain how both algorithms can be used
to compute the y-matching when the given pattern P has occurrences of
“don’t cares”. The main steps of our algorithm (Fig. 7) are as follows:

Step 1: Create a new pattern P(°) in the same way as in (1).

11

Step 2: Calculate for each position 1 <7 < n—m + 1 the value
m
Gl =Y IPY —Tiyjal.
j=1

Step 3: Create a new pattern P(1) as in (2). Additionally, a new text 7"
is computed as follows

T =Ty, 1<i<n.

Step 4: Compute G2 = T’ ® PN, That is calculate for each position
1 <7 <n-—m+1 the value

m

1)
gi2 = ZPJ'() Til+j71 = Z | Tigj-1l-

Jj=1 JeT*

Step 5: Compute the y-matching as follows: G; = G} — G2. Clearly, Z,
can be defined as Z, = {1 <i<n-—-m+1:G; <~}

In the second step, the y-matching for text and pattern without “don’t
cares” is calculated in O(nv/mlogm) time using either of the algorithms
presented in [1, 4]. The convolution in the fourth step requires O(nlogm)
time, using Fast Fourier Transform. The remaining steps require O(n+m)
time. It follows that the y-Matching problem for patterns with “don’t
cares” can solved using O(ny/mlogm) time.

Example 2 (y-matching with “don’t cares”) Fig. 6 illustrates the com-
putation of the above 1-5 steps for

T = 60, 71,62, 60, 62, 60, 71, 69, 68, 64, 60, 64, 69, 69, 62, 63, 63, 69, 60, 64

P = 68,%,60,%,68 and v = 1. Note that pattern P occurs starting at
positions 9 in T.

6 Conclusion

We have given several algorithms for approximate matching problems on
strings of integers allowing the presence of “don’t cares”. In particular,
for a given text T, and a pattern P; _,, with “don’t cares”, we have
presented two algorithms for computing the é-matching in O(|X|n(logm +
|2])) and O(dnlogm) time, respectively. Additionally, an O(ny/mlogm)-
time algorithm has been presented for computing the ~v-matching. An
outline of an algorithm for the (4, ~)-matching that runs in O(énlogm)
time has been given.

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T [60]71]62]60 6260 71]69[68]64]60]64]69]69]62]63]63]69]60]064

P [es]* [60]* [e68]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
T [60]71]62]60 62]60[71[69]68]64]60]64]69[69[62]63][63]69]60]064]
P 680 Je0] 0 [68]
G! [147]135]131]142]146 160152137129 138]156] 149] 140[130[149 [141

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7' [60]71]62]60 6260 71[69]68]64]60 64]69[69[62][63]63]69]60]064]
P [0 [1]0]1]0
G* [131]124]120]133]129 [139 133128128120 133]131 [132] 125 [132] 123]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
G Jw[ufir]ofur]2r[1o]o[1[o23[18]8][5 [17]18]

Figure 6: Illustrations of the computation of vector G.

Algorithm 3: v-Matching algorithm
Input: T, P, vy

Output: G

1. fori=1tondoT]—|T;

2. for j=1tomdo

3 if p; # % then P\” — P;; PV 0
4. else p; # x then Pj(o) — 0; Pj(l) —1
5 fori=1ton—m+1do
6

7

8

9

gl S0, [P = Ty
G2 —T' P
fori=1ton—m+1dog, — G} —G?
return G

Figure 7: v-Matching Algorithm.

Currently we are working on various two-dimensional pattern matching
algorithms for music information retrieval, based on the distinct algorithms
presented in this paper. For this purpose, we might need to handle the case
of “don’t cares” in the text as well. i.e. a x in the text matches any symbol
in the pattern.

13

References

1]

A. Amir, O. Lipsky, and E. Porat. Approximate matching in the Iy
metric. In Proceedings of the 16th Annual Symposium on Combinatorial
Pattern Matching, pages 91-103, 2005.

R. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Communications of the ACM, 35(10):74-82, 1992.

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard,
and Y. J. Pinzon. Algorithms for computing approximate repetitions
in musical sequences. International Journal of Computer Mathematics,
79(11):1135-1148, 2002.

P. Clifford, R. Clifford, and C. S. Iliopoulos. Faster algorithms for
6§, v-matching and related problems. In Proceedings of the 16th Annual
Symposium on Combinatorial Pattern Matching, pages 68-78, 2005.

R. Cole and R. Hariharan. Verifying candidate matches in sparse and
wildcard matching. In Proceedings of the 34th Symposium on Theory
of Computing, pages 592-601, 2002.

H. Cormen, C. E. Lieserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. Pinzon. Approxi-
mate string matching in musical sequences. In Proceedings of the Prague
Stringology Conference, pages 2636, 2001.

O. Lipsky. Efficient distance computations. Master’s thesis, Bar-Ilan
University, 2003.

14

