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Abstract: In this paper we focus on the combinatorial properties of
the Fibonacci strings rotations. We first present a simple formula that,
in constant time, determines the rank of any rotation (of a given Fi-
bonacci string) in the lexicographically-sorted list of all rotations. We
then use this information to deduce, also in constant time, the character
that is stored at any one location of any given Fibonacci string. Finally,
we study the output of the Burrows-Wheeler Transform (BWT) on Fi-
bonacci strings to prove that when BWT is applied to Fibonacci strings
it always produces a sequence of ‘b’s followed by a sequence of ‘a’s.
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1 Introduction

Fibonacci strings1 have been widely studied and are considered to be a
matter of common knowledge, see, for example, [1] for a good reference. Fi-
bonacci strings are important in many contexts, but they are frequently often
cited in journal articles and elsewhere as worst-case scenarios for string pattern
matching algorithms such as KMP2, Boyer-Moore and Aho-Corasick automa-
ton, and in string statistics like for computing all the Abelian squares in a
given string [3]. Another domain in which the combinatorial properties of the
Fibonacci strings are of great interest is in some aspects of mathematics and
physics, such as number theory, fractal geometry, formal language, computa-
tional complexity, quasicrystals, etc.

Informally, a Fibonacci string Fn is a string of characters with the property
that each successive string of the sequence is obtained as the concatenation
of the previous two. For example, the first five Fibonacci strings are: b, a,
ab, aba and abaab (c.f. also Fig. 1(left)). Here we are concerned with the
lexicographic ordering of the rotations of a Fibonacci string, we show that for
a given rotation of a particular Fibonacci string, one can identify the order
of that rotation in the lexicographically-sorted list of all the rotations of Fn,
without the need for explicit sorting of the rotations. The inverse problem,
consisting of finding the rotation that has a given order in the sorted list,
can also be solved without sorting. In addition, we show how the ordering of
the rotations can be used to determine the symbols of any Fibonacci string
without using the traditional recursive definition of Fibonacci strings or the
Golden Ratio φ.

Analysing rotations of strings can be useful for algorithms whose opera-
tion depends on rotations of strings and their lexicographic ordering. One
such algorithm is the block-sorting transformation known as Burrows-Wheeler
Transform (BWT) [4] used to bring repeated characters together as a prelim-
inary to compression. When BWT is applied to a string x of length n, it
produces the lexicographically-sorted list of all n rotations of x and outputs
the last symbol of every rotation of the sorted list together with the rank of the
0th rotation. By making best use of the already mentioned rationale, we show
how to compute the output of BWT when applied on Fibonacci strings with-
out engaging in any costly sorting operation. In particular, we prove that the
output is always the permutation that consists of all the ‘b’s that are contained
in the particular Fibonacci string, followed by all its ‘a’s. Fibonacci strings
are closely related to Sturmian words3, hence related work can be found in [5],

1
a.k.a. Fibonacci words.

2Knuth-Morris-Pratt.
3Sturmian words are infinite words over a two-letter alphabet of minimal subword com-

plexity which are not eventually periodic, or, in other words, that have exactly n+1 factors



n Fn fn

0 b 1
1 a 1
2 ab 2
3 aba 3
4 abaab 5
5 abaababa 8
6 abaababaabaab 13
7 abaababaabaababaababa 21

rank
(ρ)

rotation index
(i)

rotation

0 7 R7 = aabaabab

1 2 R2 = aababaab

2 5 R5 = abaabaab

3 0 R0 = abaababa

4 3 R3 = ababaaba

5 6 R6 = baabaaba

6 1 R1 = baababaa

7 4 R4 = babaabaa

(a) Fibonacci strings and
numbers

(b) Lexicographically-sorted ro-
tations of F5

Figure 1: Fibonacci strings and their rotations.

where Mantaci et. al. derived a very similar result using a different approach.
The remainder of this paper is organised as follows. In the next section,

we provide some basic definitions and prove some properties of the Fibonacci
numbers which will play a key role in proving the main results in the succeeding
sections. In Sect. 3 we prove that the rank of any rotation of a Fibonacci
string in the sorted list of all rotations of the particular Fibonacci string,
can be computed in constant time. Section 4 explains how to use the above
results to instantly deduce the symbol stored in any position of a Fibonacci
string. Finally, in Sect. 5 we prove why the output of BWT when applied to
a Fibonacci string, produces a sequence of ‘b’s followed by a sequence of ‘a’s.
Concluding remarks follow in the last section.

2 Preliminaries

We define Fibonacci number by f0 = 1, f1 = 1, fn = fn−1 + fn−2 and
Fibonacci strings are defined by F0 = b, F1 = a, Fn = Fn−1Fn−2, for n ≥ 2.
Obviously, |Fi| = fi. See Fig. 1(a) for some examples.

Definition 1. The ith rotation of a string x = x0 . . . xn−1 is defined by the
string Ri(x) = xixi+1 . . . xn−1x0x1 . . . xi−1.

Note that Ri+j(x) = Ri(Rj(x)) = Rj(Ri(x)). Thus the ith rotation4 can
be defined for 0 < i ≥ n as Ri(x) = Ri mod n(x). For F5, for example, Fig. 1(b)
gives the sorted list of all rotations.

of length n for each n ≥ 0.
4In the sequel, when refering to the ith rotation, we imply the (i mod n)th rotation.



We denote by rank(i, x) the rank of Ri(x) in the lexicographically-sorted
list of all rotations of x. We write rot(ρ, x) to denote the index of the rotation
with rank ρ, that is, rot(ρ, x) = i iff rank(i, x) = ρ. For instance, in Fig. 1(b)
rank(3, F5) = 4, and rot(5, F5) = 6.

Next, we state, without proof, two easily established lemmas that will be
required later. The first is an elementary result from number theory, while the
second corresponds to Fibonacci number analysis.

Lemma 1 ([7, page 243]). The congruence ax ≡ b (mod n) has a unique
solution x ∈ [0, n) if a is relatively prime to n.

Lemma 2 ([8, page 151]). fn is relatively prime to fn−1, for every n ≥ 2.

2.1 Some New Properties of Fibonacci Numbers

Here we prove some properties of Fibonacci numbers which will be used in
the proofs of subsequent lemmas regarding Fibonacci strings.

Lemma 3. fn is relatively prime to fn−2, for every n ≥ 2.

Proof. Assume fn is not relatively prime to fn−2; that is, fn = mk and
fn−2 = mℓ for some integers m, k, ℓ, where m 6= 1 and k > ℓ. Then

fn = fn−1 + fn−2 ⇐⇒ mk = fn−1 + mℓ ⇐⇒ m(k − ℓ) = fn−1

and thus fn−1 is not relatively prime to fn, since they have a common factor,
m 6= 1. This contradicts Lemma 2. �

Lemma 4.

f 2
n−1 mod fn =

{

−1, if n odd
1, if n even

for n ≥ 2

Proof. By Cassini’s identity [2, page 80] fn−1fn+1 − f 2
n = (−1)n.

fn−1fn+1 − f 2
n = (−1)n =⇒

fn−1(fn + fn−1) − f 2
n = (−1)n =⇒

fn−1fn + fn−1fn−1 − f 2
n = (−1)n =⇒

(fn−1fn + f 2
n−1 − f 2

n) mod fn = (−1)n mod fn =⇒
f 2

n−1 mod fn = (−1)n mod fn =⇒

f 2
n−1 mod fn =

{

−1 if n odd
1 if n even

�



Corollary 1.

f−1
n−2 mod fn =

{

fn−1 if n odd
fn−2 if n even

Proof. By Lemma 4, for n odd:

f 2
n−1 mod fn = −1 ⇐⇒

fn−1(fn − fn−2) mod fn = −1 ⇐⇒
fn−1fn − fn−1fn−2 mod fn = −1 ⇐⇒

fn−1fn−2 mod fn = 1 ⇐⇒
f−1

n−2 mod fn = fn−1

By Lemma 4, for n even:

f 2
n−1 mod fn = 1 ⇐⇒

(fn − fn−2)
2 mod fn = 1 ⇐⇒

(f 2
n − 2fnfn−2 + f 2

n−2) mod fn = 1 ⇐⇒
f 2

n−2 mod fn = 1 ⇐⇒
f−1

n−2 mod fn = fn−2

�

3 Ranking the Rotations of Fibonacci Strings

Lemma 5. For every integer n ≥ 2, Fn = Fn−2Fn−3 . . . F1u, where

u =

{

ba if n odd
ab if n even

Proof. This follows from Lemma 2.8 in [6]. �

Lemma 6. The ith rotation of Fn Ri(Fn), for i ∈ [0, fn), n ≥ 2, matches
the (i + fn−2)th rotation, Ri+fn−2

(Fn) in all but two positions. Moreover, if
i 6= fn−1 − 1 the two mismatches occur in consecutive positions.

Proof. Consider i = 0, then R0(Fn) = Fn = Fn−2Fn−3 . . . F1u, by
Lemma 5, where u = ba if n is odd, and u = ab if even. Then the (i + fn−2)th
rotation is

Rfn−2
(Fn) = Fn−3 . . . F1uFn−2 (1)

but also
R0(Fn) = Fn = Fn−1Fn−2 = Fn−3 . . . F1u

′Fn−2 (2)

where Fn−1 has been written in the form given by Lemma 5, and u′ = ab if
n − 1 is even (i.e n is odd), u′ = ba for n − 1 odd (i.e n is even). So for i = 0



the rotations do not match at positions fn−1 − 2 and fn−1 − 1 (the positions
where the two symbols of u occur; see (1) and (2)).

For any i ∈ [0, fn) the rotations Ri(Fn) = Ri(R0(Fn)) and Ri+fn−2
(Fn) =

Ri(Rfn−2
(Fn)) do not match in the same two symbols located now at positions

fn−1−2−i and fn−1−1−i (modulo fn). These two positions are unconsecutive
only for rotation i = fn−1 − 1, because for this rotation, the first symbol of u

will be located at position (fn −1), and the second symbol of u will be located
at position 0. �

Lemma 7. The ith rotation of Fn (n ≥ 2), Ri(Fn), is lexicographically
smaller (resp. larger) than the (i + fn−2)th rotation, Ri+fn−2

(Fn), for n odd
(resp. even), for all i ∈ [0, fn), i 6= fn−1−1. For i = fn−1 −1, the ith rotation
is lexicographically larger (resp. smaller) for n odd (resp. even).

Proof. From the proof of Lemma 6 we know that

R0(Fn) = Fn−3 . . . F1u
′Fn−2 and Rfn−2

(Fn) = Fn−3 . . . F1uFn−2

where u′ = ab and u = ba when n is odd, u′ = ba and u = ab when n is
even. Thus, the 0th rotation is lexicographically smaller (resp. larger) from
the fn−2th for n odd (resp. even). The same is true for every other rotation
i 6= fn−1−1, since the two symbols of u (and u′) occupy consecutive positions.

For i = fn−1 − 1 and n odd

Rfn−1−1(Fn) = bFn−2 . . . F1a (u′ = ab)

Rfn−1−1+fn−2
(Fn) = Rfn−1(Fn) = aFn−2 . . . F1b (u = ba).

Consequently Ri is lexicographically larger than Ri+fn−2
. Similarly, for n even

Ri is lexicographically smaller than Ri+fn−2
. �

Theorem 1. The rotation of Fn rot(ρ, Fn) with rank ρ in the lexicographically-
sorted list of all the rotations of Fn, for n ≥ 2, ρ ∈ [0..fn), is the rotation

rot(ρ, Fn) =

{

(ρ · fn−2 − 1) mod fn if n odd
(−(ρ + 1) · fn−2 − 1) mod fn if n even

Proof. We will prove the theorem by constructing the list of lexicograph-
ically sorted rotations. Consider n odd, intuitively, rotation Ri = Rfn−1 is
the smallest and therefore the first in the sorted list (it is the only rotation
not preceded by Ri−fn−2

, using Lemma 7). We will prove later that no other
rotation can be smaller. Now, consider that Ri = Rfn−1 occupies position 0 in
the sorted list. By Lemma 7, underneath (but maybe not immediately below,
but at some later point) there will be Ri+fn−2

. This rotation at the same time
will be followed by Ri+2fn−2

, followed by . . ., followed by Ri+kfn−2
(k ≥ 2), for

as long as
i + kfn−2 6= fn−1 − 1 (mod fn)



(by Lemma 7). We solve the following equation to find the smallest k for which
the above inequality is not true:

i + kfn−2 = fn−1 − 1 (mod fn)
fn − 1 + kfn−2 = fn−1 − 1 (mod fn)

fn + kfn−2 = fn−1 (mod fn)
fn − fn−1 + kfn−2 = 0 (mod fn)

fn−2 + kfn−2 = 0 (mod fn)
(k + 1)fn−2 = 0 (mod fn)

which means that (k + 1)fn−2 and fn share a common factor m 6= 1. By
Lemma 3, fn−2 is relatively prime to fn, thus it must be k + 1 = 0 (mod fn),
or identically k = fn − 1.5 Therefore, there are no more rotations left out
which could possibly be placed anywhere between the rotations that we have
already inserted in the sorted list. Hence the ρth position in the sorted list is
occupied by rotation

(fn − 1 + ρfn−2) mod fn = (ρfn−2 − 1) mod fn.

For n even, we construct the sorted list in a similar fashion, only now we
start by placing Rfn−1 at the bottom of the list (position fn − 1), and place
any Ri+fn−2

atop rotation i. Thus now, R(fn−1+kfn−2) mod fn
= R(kfn−2−1) mod fn

take up position fn − k − 1; that is, the ρth position is occupied by rotation

((fn − ρ − 1)fn−2 − 1) mod fn = (−(ρ + 1)fn−2 − 1) mod fn.

�

Corollary 2. The rank of the ith rotation of Fn, rank(i, Fn), in the lex-
icographically sorted list of all the rotations of Fn, for i ∈ [0..fn), n ≥ 2,
is:

rank(i, Fn) =

{

((i + 1) · fn−2) mod fn if n odd
((i + 1) · fn−2 − 1) mod fn if n even.

Proof. For n odd, by Theorem 1, the ith position is occupied by rotation
(i · fn−2 − 1) mod fn, thus the ith rotation is located at position

(i + 1) · f−1
n−2 mod fn = (i + 1) · fn−2 mod fn

since, by Lemma 1, f−1
n−2 = fn−2 for n odd.

Similarly, for n even, by Theorem 1, the ith position is occupied by rotation

(−(i + 1) · fn−2 − 1) mod fn = ((i + 1) · fn−1 − 1) mod fn

thus the ith rotation is located at position

((i + 1) · f−1
n−1 − 1) mod fn = ((i + 1) · fn−2 − 1) mod fn

since, by Lemma 1, f−1
n−1 = fn−2 for n even. �

5Note that, by Lemma 1, this solution is unique in [0, fn).



4 Predicting the Symbols of Fibonacci

Strings

Lemma 8. The number of ‘a’s in Fn (n ≥ 2) is fn−1.

Proof. By induction.

• [basis] The number of ‘a’s in F2 = ab is f2−1 = f1 = 1.

• [hypothesis] Assume that the number of ‘a’s in Fk is fk−1, for all k ∈ [2, n).

• [induction proof] The number of ‘a’s in Fn = Fn−1Fn−2 is the sum of ‘a’s
in Fn−1 and Fn−2, i.e. by induction hypothesis fn−2 + fn−3 = fn−1.

�

Lemma 9. The number of ‘b’s in Fn (n ≥ 2) is fn−2.

Theorem 2. For all i ∈ [0, fn), the ith symbol of Fn (n ≥ 2) is

Fn[i] =







a, if n odd and ((i + 1) · fn−2) mod fn < fn−1,
or n even and ((i + 1) · fn−2 − 1) mod fn < fn−1

b, otherwise

Proof. Observe that, the ith symbol of Fn is the first symbol of the ith
rotation. In the lexicographically-sorted list of rotations, all rotations that
start with ‘a’ appear before all rotations that start with ‘b’. Therefore, Fn[i]
will be ‘a’ iff the ith rotation has rank less than fn−1; otherwise it is ‘b’. �

5 Burrows-Wheeler Transform on Fibonacci

Strings

Lemma 10. The first fn−2 rotations in the lexicographically-sorted list of
rotations of Fn (n ≥ 2) end in ‘b’.

Proof. The last symbol of the ith rotation is the ((i + fn − 1) mod fn)th
symbol of Fn; that is, the ((i − 1) mod fn)th symbol of Fn.

Consider n odd. By Theorem 1, the first fn−2 rotations are the rotations
(i · fn−2 − 1) mod fn, i ∈ [0, fn−2). The last symbol of these rotations is then
(i · fn−2 − 2) mod fn, i ∈ [0, fn−2). Whence, by using Theorem 2 we identify
the last symbol of the first fn−2 rotations:

(i · fn−2 − 2 + 1)fn−2 mod fn = if 2
n−2 − fn−2 = i − fn−2 = i + fn−1

which is ≥ fn−1, since i ∈ [0, fn−2). Thus the symbol is ‘b’.



Equally for n even, by Theorem 1, the first fn−2 rotations are (−(i + 1) ·
fn−2 − 1) mod fn, i ∈ [0, fn−2). The last symbol of these rotations is then
(−(i + 1) · fn−2 − 2) mod fn, i ∈ [0, fn−2). Then, by using Theorem 2 we
identify the last symbol of the first fn−2 rotations:

[(−(i + 1) · fn−2 − 2 + 1)fn−2 − 1] mod fn = (−(i + 1) · f 2
n−2) − fn−2 − 1 =

= (i + 1) − fn−2 − 1 = i − fn−2 = i + fn−1 ≥ fn−1

since again i ∈ [0, fn−2). Thus the symbol is ‘b’. �

Corollary 3. The last fn−1 rotations in the lexicographically-sorted list of
rotations of Fn, n ≥ 2, terminate in an ‘a’.

Theorem 3. The output of BWT when applied to Fn, n ≥ 2 is

( bb . . . b
︸ ︷︷ ︸

aa . . . a
︸ ︷︷ ︸

, k )

fn−2 fn−1

where k denote the rank of the 0th rotation in the lexicographically-sorted list,
which is

k =

{

fn−2 + 1 if n odd
fn−2 if n even.

Proof. The output string of BWT is the last column of the lexicographically-
sorted list of rotations, which by Lemma 10 and Corollary 3 is bb . . . baa . . . a.

The index produced by BWT is the rank of the initial string (the 0th
rotation), which by Corollary 2 is

rank(0, Fn) =

{

fn−2 mod fn if n odd
(fn−2 − 1) mod fn if n even.

�

6 Conclusion

In this paper we focused on the combinatorial properties of the rotations
of Fibonacci strings. We first presented a simple formula that determines the
rank of any rotation (of a given Fibonacci string) in the lexicographically-
sorted list of all rotations and then used this information to deduce, also in
constant time, the symbols stored in any position of that Fibonacci string. We
also proved that the output of the Burrows-Wheeler Transform (BWT) when
applied to a Fibonacci string Fn, is always the permutation of Fn consisting
of all the ‘b’s of Fn followed by all the ‘a’s.
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