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Abstract

The number of segregating sites provides an indicator of the degree of DNA

sequence variation that is present in a sample, and has been of great interest

to the biological, pharmaceutical and medical professions. In this paper we first

provide linear- and expected-sublinear-time algorithms for finding all the segre-

gating sites of a given set of DNA sequences. We also describe a data structure

for tracking segregating sites in a set of sequences, such that every time the set is

updated with the insertion of a new sequence or removal of an existing one, the

segregating sites are updated accordingly without the need to re-scan the entire

set of sequences.

Keywords: segregating sites, single nucleotide polymorphisms (SNPs).
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1 Introduction

The number of segregating sites is defined as the number of homologous DNA positions

that differ in a sample of m sequences. This number therefore, provides an indicator

of the degree of DNA sequence variation that is present in a sample.

This quantity has long been of theoretical population genetic interest. It is directly

modelled using what has been termed an infinite sites model where every mutation is

created at a new unique site. These models date back to 1967 (Karlin and McGregor,

1967) and have since been extensively developed to estimate population size, mutation

rate, migration rates, natural selection, and ages of polymorphisms (Innan et al., 2005;

Klein et al., 1999; Perlitz and Stephan, 1997; Fu, 1996).

Segregating sites are also of interest to the pharmaceutical and medical professions.

The number and the location of polymorphisms within humans and other groups of

organisms are critical to determining the potential differences in reactions of individuals

to medicines and treatments. Since polymorphisms occur every 100 to 300 bases along

the three billion base human genome, they are crucial markers to map human genetic

diseases. As a result, single nucleotide polymorphisms (SNPs) are searched for in a

systematic manner (cf. the SNP consortium1).

With the promise of entire genomic complements being determined within a few

hours (Margulies et al., 2005) and with entire genome scans desired for SNPs (Syvanen,

2005), the need to quickly determine the number of segregating sites will become ever

more urgent. In future, it can be anticipated that these calculations will be required

over hundreds of sequences whose length is in the tens of thousands.

Segregating sites are formally defined for within population level phenomena but

1see http://snp.cshl.org for more information
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the infinite sites model and its utility to measure genetic variation are useful in other

contexts as well. The recent completion of a large number of organelle genomes chosen

in a systematic fashion is just one such example. This data records the pattern of

sequence variants within a hundred mitochondrial genomes (Miya et al., 2003). In this

case, the data consists of approximately 16,000bp from different teleostean fish. To

repeatedly query the level and pattern of variation in different subgroups requires effi-

cient methodology. Another large scale biological project that will require an efficient

algorithm is the barcode of life project (e.g. (Hebert et al., 2003)). This project aims

to sequence the cytochrome oxidase subunit 1 gene from millions of animal species.

Again, the variation within a species, within a genus, within different groups of genera

will provide useful biological insights into the evolution of these taxa. A tool to permit

the addition and removal of sequences in these queries will allow an interactive ability

to perform exploratory analyses.

In this paper we address the problem of locating the positions that constitute

segregating sites in a given set S of equal-length sequences. In addition, we create

a data structure that stores adequate information about the segregating sites of S,

such that if one adds new sequences to S or removes sequences from S, the number of

segregating sites is efficiently resolved accordingly. In this way, one avoids the need to

recompute (from scratch) the number of segregating sites in S, every time S is updated.

The paper is organised as follows. In Section 2 we introduce some necessary notation

and state the problems of finding segregating sites within a set of genomic sequences.

Section 3 describes (two variants of) a very fast algorithm to locate all segregating sites

positions. Section 4 contains an alternative algorithm to identify segregating sites with

the enhanced advantage that whenever the set of sequences is updated, the segregating

sites are updated accordingly. In Section 5, experimental results are presented and some
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implementation issues are briefly discussed. Finally, Section 6 contains our concluding

remarks.
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2 Definitions

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all

strings over Σ is denoted by Σ∗. The length of a string s is denoted by |s|. The empty

string, the string of length zero, is denoted by ε. The i-th symbol of a string s is

denoted by s[i]. A string y is a substring of s if s = uyv, where u, v ∈ Σ∗. We denote

by s[i..j] the substring of s that starts at position i and ends at position j.

Consider a set of strings S = {s1, . . . , sm}, where |si| = n ∀ i ∈ [1..m]. A position

1 ≤ j ≤ n is then called a segregating site iff there exists at least one pair of indices,

(i, i′), such that si[j] 6= si′ [j].

In Fig. 1 we give a simplistic example of a set S containing 5 DNA sequences, each

of length 14 (m = 5, n = 14). To find the segregating sites we look for those sites which

are variable in the data in terms of different nucleotides; we find them at positions 4,

8 and 10. For instance, site 4 is a segregating site since s1[4] 6= s2[4]. In contrast,

positions 1–3, 5–7, 9 and 11–14 are not segregating sites because all of the nucleotides

are the same at each of those sites. Figure 1

The problems we address in this paper are formally defined as follows.

Problem 1. Given a set of m strings S = {s1, . . . , sm}, where |si| = n ∀ i ∈ [1..m],

locate all the positions 1 ≤ j ≤ n that constitute segregating sites in S.

Problem 2. Given a set of m strings S = {s1, . . . , sm}, where |si| = n ∀ i ∈ [1..m],

whose segregating sites have already been computed, and a set of ℓ strings S ′ =

{s′
1
, . . . , s′

ℓ
}, where |s′

i
| = n ∀ i ∈ [1..ℓ], efficiently find the positions 1 ≤ j ≤ n that

constitute segregating sites in S ∪ S ′ or S\S ′.
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3 Locating Segregating Sites

In this section we consider Problem 1. First we present a fairly simple and fast algo-

rithm that identifies all the segregating sites in a given set of sequences in time linear

with respect to the input size. We then show a variant of this algorithm, whose ex-

pected running time is sublinear for sets of sequences that contain many segregating

sites (i.e. for the dense case).

3.1 A Simple and Fast Algorithm

Let S = {s1, . . . , sm} be the set of strings to be analysed, where |si| = n ∀ i ∈ [1..m].

We will use a binary vector ss of length n to indicate the positions where there is

a segregating site, i.e. ss[j] = 1 iff site located at j is segregating, and ss[j] = 0

otherwise. At the beginning this vector should contain only zeros (no segregating sites

have been found). The algorithm works as follows. All (but the first) sequences are

scanned from left to right. During the scan of the i-th sequence, if a position j has

not already been marked as a segregating site, then the symbol si[j] is checked for

discrepancies with the corresponding symbol in the first sequence s1[j]. If they are

different, a new segregating site has been discovered and we set ss[j] = 1, otherwise we

leave everything unchanged. The complete algorithm is summarized in Algorithm 1.

Note that this algorithm first checks if ss[j] = 0 to know if position j is a segregating

site already (see line 5). If it is (ss[j] = 1), then there is no need to check what type of

symbol si[j] is, because it wouldn’t make a difference to the current status of site j. If

it is not (ss[j] = 0), then that implies that all previous sequences {s1, . . . , si−1} contain

the same symbol at position j, and therefore the new symbol si[j] needs to be checked

against position j of any of the sequences already scanned, e.g. s1[j]. To understand
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Algorithm 1 Locate all the segregating sites in a set of strings S

Input: Set of strings S = {s1, . . . , sm}, each of size n

Output: Positions of segregating sites in S

1: procedure SS-Alg1(S)

2: ss[1..n]← {0, 0, . . . , 0}

3: for i = 2 to m do

4: for j = 1 to n do

5: if ss[j] = 0 and si[j] 6= s1[j] then

6: ss[j]← 1

7: return the positions of 1’s in ss

this issue better, we present the following simple example (see Fig. 2). Consider a set

of m sequences S whose first two sequences s1 and s2 have already been processed, and

a third sequence s3 is now being processed. Note that, for every position that has not

already been marked as a segregating site, we need to compare the current nucleotide

against the corresponding nucleotide in s1. For instance, at position 1 the symbol

s3[1] is compared against s1[1]; since they are equal, position 1 remains unmarked. At

position 6, on the contrary, s3[6] 6= s1[6], thus position 6 is marked as a segregating

site (ss[6] = 1). Notice though that when column 3 is processed, there is no need to

check s3[3] because that position has already been marked as a segregating site. Figure 2

The running time of Algorithm 1 is clearly Θ(mn): all the sequences are scanned

only once, spending a constant amount of time at each position of every sequence. The

space requirements of the algorithm are limited to Θ(n), the space required by vector

ss.
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3.2 An Expected-sublinear-time Algorithm

From close observations of the way Algorithm 1 works, we know that the larger the

number of segregating sites and the earlier the sites are identified as segregating, the

more the symbols that do not need to be checked. For instance, in the set of sequences

depicted in Fig. 3, approximately 19% of the symbols are not checked (the symbols

displayed in gray). Figure 3

Although Algorithm 1 does not check the symbols at those positions that have been

identified as segregating sites, it would nonetheless check vector ss to decide whether

the positions are segregating sites or not, as a result, the algorithm performs precisely

(m − 1)n iterations. However, for those cases when a large number of segregating

sites is present (i.e. the dense case), it seems to be beneficial to completely skip those

positions and only process non-segregating-site positions.

To this end, a simple linked list can be used to maintain the list of positions to be

processed. Every time a new segregating site is discovered, the corresponding position

will be removed from the list. Then for every subsequent sequence, only the positions

included in this list will ever be processed. Algorithm 2 describes these ideas in more

detail.

In the worst case, Algorithm 2 will yet again need O(mn) time to process a set of m

sequences each of length n. The expected running time though will be sublinear with

respect to the input size, since as soon as a position is identified as a segregating site

it will no longer be visited again. In practice (as we shall see in Section 5) only when

the number of segregating sites is very small, the extra time consumed in maintaining

the list of positions, exceeds the time saved by the skipped positions, confirming that

this algorithm is good for samples containing more than a small number of segregating

sites.
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Algorithm 2 Locate all the segregating sites in a set of strings S. Algorithm for dense

segregating sites.

Input: Set of strings S = {s1, . . . , sm}, each of size n

Output: Positions of segregating sites in S

1: procedure SS-Alg2(S)

2: ss[1..n]← {0, 0, . . . , 0}

3: P = {1, 2, . . . , n}

4: for i = 1 to m do

5: for all j ∈ P do

6: if si[j] 6= s1[j] then

7: ss[j]← 1

8: P ← P\{j}

9: return the positions not in P
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4 Locating and Updating Segregating Sites

In this section we extend our techniques to tackle both Problems 1 and 2 (as described

in Section 2). We start by describing a data structure capable of holding enough

information about the segregating sites of a set of sequences S, such that any update

to the set of sequences S can be incorporated, avoiding thus the need to recompute

from scratch the positions of segregating sites of the updated set. We then present the

algorithms that handle this new data structure.

4.1 The SSCounter Data Structure

Let S = {s1, . . . , sm} be the set of strings to be analysed, where |si| = n ∀ i ∈ [1..m].

Our data structure, which we will hereafter call the SSCounter, will maintain the

following information:

1) An integer k representing the number of strings that occur at any time in S.

2) The (common) length n of each string in S.

3) A binary vector ss of length n that will indicate the positions that are segregating

sites; that is, ss[j] = 1 iff position j is a segregating site, and ss[j] = 0 otherwise,

for all 1 ≤ j ≤ n.

4) For every distinct symbol σ ∈ Σ, a vector cσ = cσ[1..n] will hold counters that

keep the number of strings si ∈ S that contain the symbol σ at each position

1 ≤ j ≤ n; i.e. cσ[j] = ν iff the number of strings si for which si[j] = σ is

precisely ν.

From the above definitions, the following fact becomes immediately apparent. Any

position 1 ≤ j ≤ n will be a segregating site iff there exists at least one symbol
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σ ∈ Σ such that 0 < cσ[j] < m, or equivalently, there is no symbol σ ∈ Σ such that

cσ[j] = m. Naively, the evaluation of any position j requires the evaluation of (at

most) |Σ| counters for that position. However, this step can be efficiently computed

by storing one extra piece of information:

5) A vector of counters ac[1..n], which for each position j indicates the number of

non-zero (active) counters; that is, ac[j] = ℓ iff there exist precisely ℓ symbols

σ1, σ2, . . . , σℓ such that cσ > 0 for all σ ∈ {σ1, σ2, . . . , σℓ}.
Figure 4

An example of an SSCounter data structure is shown in Fig. 4(b), which corresponds

to the set of strings shown in Fig. 4(a). Positions 1, 3, 6 and 7 are segregating sites,

since in each of those positions there are more than one symbols σ for which the counter

cσ > 0.

Clearly, the space requirements of an SSCounter is Θ(|Σ|n). This will normally be

significantly less than the space required by the set S itself, since usually the number

of strings m is much larger than the size of the alphabet Σ.

4.2 Inserting New Sequences into S

Procedure Insert (see Algorithm 3) handles insertions. For each new sequence s′

inserted into S, the algorithm works as follows. s′ is scanned from left to right, and

for every position j, the counter of the symbol occurring at s′[j] is increased; in other

words, if s′[j] = σ, then the counter cσ[j] is increased by 1 to denote that one additional

string contains the symbol σ at position j. Next, the value of counter cσ[j] is checked

and if it equals 1 then this corresponds to a new non-zero counter and thus ac[j] is

increased by 1. Finally, if ac[j] = 2, the position has just become a segregating site

and has to be marked as such.
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Algorithm 3 Insert a string s′ into S and update the SSCounter

Input: The SSCounter of a set of strings S, and a string s′ of size n

Output: The SSCounter of S ∪ {s′}

1: procedure Insert(the SSCounter of S, string s′)

2: k ← k + 1

3: for j = 1 to n do

4: σ ← s′[j]

5: cσ[j]← cσ[j] + 1

6: if cσ[j] = 1 then

7: ac[j]← ac[j] + 1

8: if ac[j] = 2 then

9: ss[j]← 1

10: return the positions of 1’s in ss

Algorithm 3 performs a single scan through the newly inserted sequence s′. The

amount of time spent at each position j depends on the type of alphabet:

— for indexed alphabets, the counter cσ that corresponds to the current symbol σ,

can be identified in O(1), thus the time spent at each position j is O(1).

— for general ordered alphabets, a binary search is required to identify cσ, thus the

time spent at each position is O(log |Σ|).

Therefore, the overall running time of Algorithm 3 is Θ(n) for indexed alphabets,

and Θ(n log |Σ|) for ordered alphabets. In biological applications, of course, the DNA

alphabet or the amino-acid alphabet is used, which will be indexed.
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Algorithm 4 Remove a string from an SSCounter

Input: The SSCounter of a set of strings S, and a string s′ of size n

Output: The SSCounter of S\{s′}

1: procedure Remove(the SSCounter of S, string s′)

2: k ← k − 1

3: for j = 1 to n do

4: σ ← s′[j]

5: cσ[j]← cσ[j]− 1

6: if cσ[j] = 0 then

7: ac[j]← ac[j]− 1

8: if ac[j] = 1 then

9: ss[j]← 0

10: return the number of 1’s in ss

4.3 Removing Sequences from S

Similarly, procedure Remove (see Algorithm 4) handles removals of strings from S.

When a sequence s′ is removed from S, s′ is scanned from left to right, and for every

position j, the counter cσ[j] is decreased by one, where σ = s′[j]. Next, we have to

check whether that counter equals 0. If it does, and also position j was marked as a

segregating site, then one needs to re-evaluate whether position j is still a segregating

site. It will still be 1 iff at least two symbols occur at column j; i.e. iff ac[j] > 1.

Likewise, as in procedure Insert, the time complexity of Remove is also Θ(n) for

indexed alphabets, and Θ(n log |Σ|) for ordered alphabets.
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5 Experimental Results

We implemented all of the algorithms presented in the paper using C++ and conducted

a series of experiments in order to test their performance. The datasets we used

consisted of both randomly generated sequences, tailored to the needs of the specific

experiments we run, and biological sequences2.

First, we tested how the running time of the algorithms scales with respect to the

number of the segregating sites present in the dataset. In Fig. 5(a) we considered a

varying number of sequences (10 ≤ m ≤ 100) of length n = 10000, which contained

only a small number of segregating sites, while in Fig. 5(b) again a varying number of

sequences of length n = 10000 was considered but this time the number of segregating

sites was considerably larger. Figure 5

From the graph in Fig. 5(a) we can see that the running times of procedures SS-

Alg1 and SS-Alg2 are practically identical when the number of segregating sites

is small, while Fig. 5(b) shows that as the number of segregating sites increases, the

running time of SS-Alg2 is reduced, by a small fraction in this case. The amount

of this reduction depends exclusively on the number of comparisons avoided by SS-

Alg2, which itself depends on both the number of segregating sites and how early

these segregating sites are identified; the earlier the better. Finally, we observe that

the running time of Insert is practically independent of the number of segregating

sites. This is true, given that this algorithm performs almost the same amount of work

for each position of any input sequence, regardless of whether it is a segregating site

or not.

Secondly, we compared the running time of procedure Insert against that of Re-

2All the sequences were given in the FASTA format.
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move. An existing SSCounter, ssc, was passed to the two procedures, and then the

same sets of sequences were inserted to/removed from ssc, using Insert and Remove,

respectively. As can be seen in Fig. 6, the two algorithms perform identically in terms

of running time for the values chosen in this experiment. Figure 6

Finally, we run our procedures on sets of biological sequences. The first set consisted

of 106 sequences of intron 4 from the licorne gene of Drosophila simulans and Drosophila

melanogaster strains taken from Haddrill et al (?). The Anoplura data set are sequences

of cytochrome oxidase subunit 1, downloaded from GenBank3. The third set contained

various Drosophila complete mitochondrial genomes, also downloaded from GenBank.

And the last data set is 54 newly sequenced complete mtDNA genomes from teleost

fish from Miya et al (Miya et al., 2003). The results are shown in Table 1, where n is

the common length of all the sequences in each set, and m is the number of sequences

in the set. Table 1

3http://www.ncbi.nlm.nih.gov
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6 Conclusions

In this paper we presented algorithms for finding all the segregating sites of a given set

of strings S. The first two algorithms are very fast and are useful when S is a new, not

already processed, set of sequences. Both algorithms operate in O(mn) time, where m

is the number of input sequences and n is their length, however the second algorithm’s

expected running time will be on average less than O(mn).

We also presented two more algorithms, which not only can compute the segregating

sites of a new set of strings S, but also can update the number and positions of the

segregating sites of S, whenever the latter is updated with an insertion of a new string

or the removal of an existing one.
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Figure 4: Example of an SSCounter.
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Figure 5: Running time for (a) 1000, and (b) 9000 segregating sites.
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Figure 6: Running time for updating an SSCounter.
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Procedures

Set of Sequences n m Seg. Sites SS-Alg1 SS-Alg2 Insert

Drosophila 1 546 106 225 17ms 16ms 22ms

Anoplura 882 184 822 38ms 29ms 61ms

Drosophila 2 16111 35 2632 66ms 88ms 181ms

Fish 25619 54 22492 207ms 224ms 370ms

Table 1: Performance of the algorithms for biological sequences.
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