
VSP International

Science Publishers

P.O. Box 346, 3700 AH Zeist

The Netherlands

Lecture Series on Computer

and Computational Sciences
Volume X, 2004, pp. 1-4

Searching for Regularities in Weighted Sequences

M. Christodoulakis, C. Iliopoulos, K. Tsichlas
Department of Computer Science, King’s College, Strand, London WC2R 2LS, England

{manolis,csi,kostas}@dcs.kcl.ac.uk

K. Perdikuri
Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece

perdikur@ceid.upatras.gr

Abstract: In this paper we describe algorithms for finding regularities in weighted se-
quences. A weighted sequence is a sequence of symbols drawn from an alphabet Σ that
have a prespecified probability of occurrence. We show that known algorithms for find-
ing repeats in solid sequences may fail to do so for weighted sequences. In particular, we
show that Crochemore’s algorithm for finding repetitions cannot be applied in the case
of weighted sequences. However, one can use Karp’s algorithm to identify repeats of spe-
cific length. We also extend this algorithm to identify the covers of a weighted sequence.
Finally, the implementation of Karp’s algorithm brings up some very interesting issues.

1 Introduction

Weighted sequences are used for representing relatively short sequences such as binding sites as
well as long sequences such as profiles of protein families (see [2], 14.3). In addition, they are also
used to represent complete chromosome sequences ([2], 16.15.3) that have been obtained using
a whole-genome shotgun strategy with an adequate cover. The cover is the average number of
fragments that appear at a given location. Usually, the cover is large enough so that errors as well
as SNPs are clearly spotted and removed by the consensus step.

By keeping all the information the whole-genome shotgun produces, we would like to dig out
information that has been previously undetected after being faded during the consensus step (for
example the consensus step wrongly chooses a symbol for a specific position than another). As a
result, errors in the genome are not removed by the consensus step but remain and a probability
is assigned to them based on the frequency of symbols in each position.

In this paper we present efficient algorithms for finding repetitions and covers in a weighted
sequence. In solid sequences the algorithms of Crochemore [1] and Karp [5] are well known and
have a O(n log n) time complexity. Their difference is that the first algorithm computes repetitions
of all possible lengths while the second can compute repetitions of prespecified length.

There was already an attempt [4] to apply Crochemore’s algorithm to weighted sequences.
However, as we show in this paper the algorithm fails to find repetitions in O(n log n) time. In fact
it needs O(n2) time to be able to compute all repetitions. However, Karp’s algorithm has already
been applied for this problem [3] successfully. In this paper we extend this algorithm to compute
covers on weighted strings while we experimentally investigate its efficiency.

The structure of the paper is as follows. In Section 2 we give the basic definitions to be used
in the rest of the paper. In Section 3 we argue why Crochemore’s algorithm is not suitable for
weighted sequences while in Section 4 we sketch the algorithm for finding repetitions and covers
based on Karp’s algorithm. Finally, in Section 5 we provide experimental results.

2 M. Christodoulakis, C. Iliopoulos, K. Perdikuri, K. Tsichlas

2 Preliminaries

In this work we concentrate on the identification of repetitions and covers of fixed length in a
weighted biological sequence with probability of appearance ≥ 1/k, where k is a small fixed constant
determined by biologists (for example k ≤ 10). The size of k is chosen small in order to represent
the restricted ambiguity in the appearance of several characters in a biological sequence.

Assume an alphabet Σ = {1, 2, . . . , σ}. A word s of length n is represented by s[1..n] =
s[1]s[2] · · · s[n], where s[i] ∈ Σ for 1 ≤ i ≤ n, and n = |s| is the length of s. A factor f of length p
is said to occur at position i in the word s if f = s[i, · · · i + p − 1]. A word has a repetition when
it has at least two equal factors. A repetition is a cover when each position of the word s belongs
in this repetition. A weighted sequence is defined as follows:

Definition 1 A weighted sequence s = s1s2 · · · sn is a set of couples (q, πi(q)), where πi(q) is the
occurrence probability of character q ∈ Σ at position i. For all positions 1 ≤ i ≤ n,

∑σ

q=1 πi(q) = 1.

A factor is valid when its probability of occurrence is ≥ 1
k
, where k is a small fixed constant.

The probability of occurrence of a factor f = f [1] . . . f [m] occurring at position i in weighted
sequence s is the product of probabilities of occurrence of the respective symbols of f in s, i.e.∏m

j=1 πi+j−1(f [j]). A weighted sequence has a repetition when it has at least two identical occur-
rences of a factor (weighted or not). In biological problems scientists are interested in discovering
all the repetitions as well as covers of all possible words having a probability of appearance larger
than a predefined constant. In the algorithms we provide we can always find the largest repetition
or cover in a weighted sequence by a simple exponential and binary search on possible lengths. As
a result we focus only for a prespecified length d.

3 Why Crochemore’s Algorithm Fails for Weighted Sequences

This section assumes that the reader is familiar with the algorithm of Crochemore for finding
repetitions [1]. The algorithm uses integers to represent factors. The Ei vector holds the factors
of length i that start at each position of the text. The algorithm works in stages, each of which
corresponds to the computation of repetitions of length larger by one with respect to the previous
stage, while at the first stage repetitions of length 1 are computed. At each stage the algorithm
chooses small classes to work on, without processing large classes. All classes that have not been
processed in stage i, implicitly specify longer factors at stage i + 1. This is the crucial property of
this algorithm that results in an O(n log n) time complexity.

The problem on weighted sequences is clear: we cannot increment factors implicitly; we have to
update their probabilities of occurrence at each step so that we know whether these repetitions have
a probability ≥ 1

k
. As a result, we are obliged to process all classes which leads to an O(n2). The

authors of [4] did not notice this problem so they claimed that the complexity is O(n log n), which
is wrong. Alternatively, one could try find all the repetitions without computing probabilities,
and then compute the probabilities of the actual repetitions. This is no better because the length
of each repetition can be O(n) (thus, O(n) multiplications) for each repetition. Moreover, if we
don’t compute probabilities throughout the algorithm we might end up with O(|Σ|n) factors. As
a result, it seems that adopting this approach for finding repetitions in weighted sequences will
probably not lead to and o(n2) algorithm.

4 Karp’s algorithm

Karp’s algorithm computes equivalence classes, similar to Crochemore’s, but it computes them
using log n steps of O(n) time each. It has been successfully applied to weighted sequences [3].
The following lemma is the basic mechanism of Karp’s algorithm.

Searching for Regularities in Weighted Sequences 3

Lemma 1 For integers i, j, a, b with b ≤ a we have iEa+bj precisely when iEaj and i + bEaj + b
(1) or, equivalently, when iEaj and i + aEbj + a (2).

Based on Karp’s algorithm, we will briefly sketch how it is applied to weighted sequences.

Definition 2 Given a weighted sequence s, positions i and j of s are k-equivalent (k ∈ {1, 2, . . . , n}
and i, j ∈ {1, 2, . . . , n − m + 1}) —written iEkj— if and only if there exists at least one substring
f of length m, that appears at (starts at) both positions i and j.

The equivalence class Ek is represented as a vector v
(k)
1 v

(k)
2 . . . v

(k)
n−k+1 of sets of integers, where

each set v
(k)
i contains the labels of the equivalence classes of Ek to which each factor starting at po-

sition i belongs. The implementation of the algorithm is based on Equation (2) from Lemma 1 while
its description in [3] was based on Equation (1). A detailed description of the algorithm follows.
The new algorithm will be using ea + eb pushdown stores, P (1), . . . , P (ea) and Q(1), . . . , Q(eb).

1. Sort the vector v(a) using the P -pushdown stores; that is, run through v(a), and for each
factor x at each position i, push i into P (x). Note that the same position i may be pushed into
more than one stacks. So far, having the same position i in more than one P -stack causes no
problem, since these stacks are distinct. But, for the sake of the explanation, let’s distinguish
them in the following way: we will use ix to denote the position i when it refers to the factor x
starting at i; thus, ix′ will denote the same position i but referring to it’s second factor x′ (6= x).

2. In success, pop each P (x) until it is empty. As the number ix is popped from P (x), push it

into the Q-pushdown stores Q(y) y ∈ v
(b)
d+a provided that d + a ≤ n− (a + b − 1). Note that there

may be more than one factors y of length b starting at position d + a. Therefore, position ix will
be pushed into all appropriate Q stacks. However, when another P stack, say P (x′), is popped,
it is possible that the same position ix′ (referring to different factor) will be pushed into the same
Q stacks as ix. Had we not distinguished ix from ix′, we would end up with the same position i
appearing more than once in the same stack Q(y), and of course the ambiguity as to which factor
starting at position i this refers to, would make it impossible to go on to the third step.

3. Finally, construct v(a+b): Successively pop each Q-stack until empty. Start with a variable
class counter c initially set to 1. As each ix is popped from a given stack Q(y) test whether or not
x is equal to x′, where x′ is the factor represented by position j just previously popped from the
same stack; that is, element jx′ was previously popped. If this is so, then iEaj and i+ bEaj + b, so

iEa+bj; therefore, insert c in the set v
(a+b)
d . Otherwise we have i+bEaj+b but not iEaj; therefore,

insert c + 1 into v
(a+b)
d and increment c to c + 1. When stack Q(y) is exhausted, increment c to

c + 1 before beginning to pop the next Q-stack. Whenever ix is the first element from a Q-stack,

insert c into v
(a+b)
d automatically.

4.1 Covers

Covers in weighted sequences fall into two categories: (a) allow overlaps to pick different symbols
from one single and (b) factors that overlap choose the same symbols for overlapping regions.
Notice that the first kind of covers allows border-less covers to overlap while the second does not.

Assume that we are interested only in length-d covers. This problem is solved in O(n) extra
time (thus O(n log n) total time) for either case:

1. Scan Ed for every factor occurring at position 1 (there is a constant number of them); if the
distance of consecutive occurrences of the same factor is always ≤ d then a cover has been found.

2. Compute the border array of the candidate cover (O(d) time). Scan Ed, like in (1), only
now reject occurrences that start at positions other than some border of the previous occurrence.

Obviously we can do this for every class Ei that is computed on the way to create Ed. The com-
putation of type (a) covers is straightforward. On the other hand, type (b) covers face a difficulty:

4 M. Christodoulakis, C. Iliopoulos, K. Perdikuri, K. Tsichlas

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000 25000 30000 35000 40000

T
im

e
(s

ec
)

Input Size (# weigtded characters)

Weigted Covers - Testing Input Size, Factor Length : 10, Cut-off probability : 1%

Weighted Covers Type 1
Weighted Covers Type 2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 3 3.5 4 4.5 5 5.5 6 6.5 7

T
im

e
(s

ec
)

logarithm of the factor length

Weigted Covers - Testing Factor Length, Input size : 10000, Cut-off probability : 0.5%

Weighted Covers Type 1
Weighted Covers Type 2

Figure 1: Weighted Covers. Left: The running time with respect to n. Right: The running time
with respect to log2 d.

how can the border array of a factor be computed, since factors are only represented by integers,
and the actual factors (strings) are never stored? Obviously, there is no other way than storing
the actual strings that correspond to the numbers that represent factors. The space complexity
for this is O(nd), since there are at most O(n) factors of length d. The time complexity remains
unaffected by the fact that the actual factors are identified and stored. For example, consider that
we will combine the equivalence relations Ea and Eb to obtain Ea+b. The identification of a factor
in Ea+b takes only constant time since it can be constructed by the concatenation of one factor
from Ea with one factor from Eb.

5 Experimental Results

The algorithms were implemented in C++ using the Standard Template Library (STL), and run on
a Pentium-4M 1.7GHz system, with 256MB of RAM, under the Red Hat Linux operating system
(v9.0). The datasets used for testing the performance of our algorithms consisted of many copies of
a small random weighted sequence. We chose this repeated structure, rather than totally random
files, in order to get a fair comparison of the running times.

The running time for locating weighted covers is shown in Figure 1. As expected, weighted
covers of type (b) need more time to be computed since, in contrast with type (a) covers, a border
array has to be constructed, and overlapping between consecutive occurrences of the same factor
needs to be tested. Nevertheless, the asymptotic growth is still O(n log d). An interesting aspect
of the algorithm is being revealed in the right graph: the running time tends to become constant
for larger values of d. The reason is simple: as the length of the factor increases, there is a point
at which the number of factors (with adequate probability) gets to zero.

References

[1] M. Crochemore. An Optimal Algorithm for Computing the Repetitions in a Word. Information
Processing Letters, 12:244–250, 1981.

[2] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press, 1997.

[3] C.Iliopoulos, K. Perdikuri, A. Tsakalidis and K. Tsichlas. The Pattern Matching Problem in
Biological Weighted Sequences. In the Proc. of FUN with Algorithms, 2004.

[4] C. Iliopoulos, L. Mouchard, K. Perdikuri, A. Tsakalidis. Computing the repetitions in a
weighted sequence. In the Proc.of the Prague Stringology Conference (PSC), pp. 91-98, 2003.

[5] R. Karp, R. Miller, A. Rosenberg. Rapid Identification of Repeated Patterns in Strings, Trees
and Arrays. In the Proc. of the Symposium on Theory of Computing (STOC), 1972.

