Overview

- Part 1 - VHDL Basics and Types of Descriptions
- Part 2 - Behavioral and Hierarchical Description
 - VHDL Hierarchy
 - Entities
 - Entity Instantiation
 - Behavioral Descriptions
 - Using:
 - Assignment statements
 - Higher-level operators
- Part 3 - Finite State Machines
- Part 4 - Registers and Counters
- Part 5 - Algorithmic State Machine Example: Binary Multiplier
Hierarchical & Behavioral VHDL Example - 1

```vhdl
library ieee;
use ieee.std_logic_1164.all;
entity addsub is
    port (A, B: in std_logic_vector(3 downto 0);
          sub: in std_logic;
          R: out std_logic_vector(3 downto 0));
end addsub;
architecture hierarchy of addsub is
    component add
        port (X, Y: in std_logic_vector(3 downto 0);
              C_in: in std_logic;
              S: out std_logic_vector(3 downto 0));
    end component;
    signal data_out: std_logic_vector(3 downto 0);
    begin
        a1: add
            port map(X => A, Y => data_out, C_in => sub, S => R);
        m1: M1comp
            port map(data_in => B, data_out => data_out, comp => sub);
    end hierarchy;
```

Hierarchical & Behavioral VHDL Example - 2

```vhdl
component M1comp
    port (data_in: in std_logic_vector(3 downto 0);
          comp: in std_logic;
          data_out: out std_logic_vector(3 downto 0));
end component;

signal data_out: std_logic_vector(3 downto 0);
begin
    a1: add
        port map(X => A, Y => data_out, C_in => sub, S => R);
    m1: M1comp
        port map(data_in => B, data_out => data_out, comp => sub);
end hierarchy;
```
Hierarchical & Behavioral VHDL Example - 3

```vhdl
--add ENTITY AS INSTANTIATED ABOVE
library ieee;
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all;
-- Package "unsigned" required for type conversion to
-- perform + on std_logic signals instead of on integers
entity add is
  port (X, Y: in std_logic_vector(3 downto 0);
        C_in: in std_logic;
        S: out std_logic_vector(3 downto 0));
end add;
architecture behavioral of add is
begin
  S <= X + Y + ("000" & C_in);
end behavioral;
```

Hierarchical & Behavioral VHDL Example - 4

```vhdl
--M1comp ENTITY AS INSTANTIATED ABOVE
library ieee;
use ieee.std_logic_1164.all;
entity M1comp is
  port (data_in: in std_logic_vector(3 downto 0);
        comp: in std_logic;
        data_out: out std_logic_vector(3 downto 0));
end M1comp;
architecture behavioral of M1comp is
begin
  data_out <= (comp & comp & comp & comp) xor data_in;
end behavioral;
```
Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education Legal Notice.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page