Overview

- Part 1 - VHDL Basics and Types of Descriptions
- Part 2 - Behavioral and Hierarchical Description
- Part 3 - Finite State Machines
- Part 4 - Registers and Counters
 - Registers
 - Shift Registers
 - Counters
 - Examples
 - 4-bit Left Shift Register with Reset
 - 4-bit Binary Counter with Reset
- Part 5 - Algorithmic State Machine Example: Binary Multiplier
VHDL for Registers and Counters

- Register - similar description to a flip-flop except contains multiple bits:

```
signal Q, D : std_logic_vector(15 downto 0);
process (CLK, RESET)
begin
  if (RESET = '1') then
    Q <= B"0000000000000000";
  elsif (CLK'event and CLK = '1')
    Q <= D;
end
```

- Shift Register – use:
 - Shift operators
    ```
    Q <= Q sll 1; -- By default fills rightmost bit with -- 0; defaults differ depending on the shift type;
    ```
 - Concatenation
    ```
    Q <= Q(14:0) & SI; -- SI is one bit shift input
    ```

- Counter – use increment, decrement, add, subtract:
  ```
  count <= count + "0001"; -- count is four bits
  ```

VHDL Description of Left Shift Register

```vhdl
library ieee;
use ieee.std_logic_1164.all;
entity srg_4_r is
  port (CLK, RESET, SI: in std_logic;
        Q : out std_logic_vector(3 downto 0);
        SO : out std_logic);
end srg_4_r;
architecture sequential of srg_4_r is
  signal shift: std_logic_vector(3 downto 0);
begin
  process (RESET, CLK)
  begin
    if (RESET = '1') then
      shift <= "0000";
    elsif (CLK'event and (CLK = '1')) then
      shift <= shift(2 downto 0) & SI;
    end if;
  end process;
  Q <= shift;
  SO <= shift(3);
end sequential;
```
VHDL Description of Binary Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity count_4_r is
port(CLK, RESET, EN: in std_logic;
 Q : out std_logic_vector(3 downto 0);
 CO : out std_logic);
end count_4_r;
architecture sequential of count_4_r is
signal count: std_logic_vector(3 downto 0);
begin
process (RESET, CLK)
begin
if (RESET = '1') then
 count <= "0000";
elsif (CLK'event and
 (CLK = '1') and (EN = '1'))
then
 count <= count + "0001";
end if;
end process;
Q <= count;
CO <= '1' when (count = "1111" and EN = '1') else '0';
end sequential;
end;

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education Legal Notice.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page