Supplement to

Logic and Computer
Design Fundamentals
4th Edition!

MORE OPTIMIZATION

Fundamentals are provided here for optional coverage and for self-study. This

material fits well with the desired coverage in some programs but not may not fit
within others due to time constraints or local preferences. This supplement provides
two optimization algorithms for finding a minimum cost two-level circuit. The first
algorithm selects prime implicants for a minimum cost implementation of a two-level,
sum of products circuit. The second algorithm replaces K-maps with tabular
representations that permit the handling of more that the six variables possible using
K-maps. Unfortunately, the latter algorithm is difficult to execute manually and the
prime implicant generation approach is not the best for program implementation. The
prime implicant selection step is more useful for both manual computation for simple
problems and computer implementation for more complex ones. Overall, the material
in this supplement provides a more rigorous perspective for the cost optimization for
two-level circuits and shows some of the potential computational difficulties of
rigorous optimization problem solutions for digital circuits.

Both sections require the study of sections 2-4 and 2-5 of the textbook. Coverage of
the tabular algorithm is optional, but has as it prerequisite coverage of the prime
implicant selection algorithm.

S elected topics not covered in the fourth edition of Logic and Computer Design

A Prime Implication Selection Algorithm

In Chapter 2 of Logic and Computer Design Fundamentals by Mano and Kime, a
selection rule for choosing non-essential prime implicants for a sum-of-products
expression for a function is given. Recall this selection rule: “Minimize the overlap
among prime implicants as much as possible. In particular, in the final solution
make sure each prime implicant selected includes at least one minterm not
included in any other prime implicant.” While it often gives good results, the selec-
tion rule does not guarantee a minimum literal or gate input cost solution. The
alternative approach given here is systematic and guarantees a minimum cost solu-
tion.

1© Pearson Education 2008 All rights reserved.

00 01 11 10

00 EN
off |1V [[]| [1
— B
11 A E wr
A
104 1] |1 1\\
— T~ ACD
BD D
O FIGURE 1

Example 1 — Need for Prime Implicant Selection Algorithm

WHY Is A PRIME IMPLICANT SELECTION ALGORITHM NEeDED? Figure 1 illustrates the
need for a prime implicant selection algorithm that goes beyond the selection rule.
In this example, the essential prime implicants have been selected and the min-
terms covered by these prime implicants have been checked off. The minterm with-
out a check, ABCD, must be included in a prime implicant in the sum-of-products
expression. The two prime implicants that include this minterm are ACD and BD.
Applying the selection rule, we pick ACD since this overlaps other prime impli-
cants in only one minterm. In contrast, BD overlaps other prime implicants in
three minterms. But is this the best choice? The answer is clearly no, since ACD
has three literals and BD has only two. Selection of BD clearly gives a smaller lit-
eral cost, demonstrating that the selection rule is inadequate for achieving the min-
imum literal cost goal.

The question we need to answer is: How can we construct a systematic algo-
rithm for prime implicant selection? This example gives two hints at what is lacking
in the selection rule. First of all, we need to take into account the number of literals
required to implement the product term corresponding to a prime implicant. Sec-
ond, we need a more systematic way of determining the “overlap” between prime
implicants. The algorithm we will give accomplishes both of these goals. This algo-
rithm solves what is generally referred to as a “minimum covering problem” —
hence, we will refer to its solution which covers minterms of the function with
prime implicants as a minimum prime implicant cover. Two additional concepts
related to the goals above and essential to the algorithm appear in the next section.

Less Than PIs and Secondary Essential PIs

For simplicity, we abbreviate the term “prime implicant” using PI. For multiple
prime implicants, we add an s to give Pls. In seeking a minimum PI cover, we want
to exclude those Pls that at the given stage of the algorithm execution would not be

2 0O

1
00 01 11 | 10
oo[| 1 ' 1 1 -
| — 4 BCD
o i
Aco — o1 =
B
11 HE 1|
A
10, 1 ;
e —
D
O FIGURE 2

Example 2 — Less Than and Secondary Essential PIs

included in the PI cover we are forming. The less than PI concept permits us to do
this. Once one or more PIs have been excluded, then some other PIs must be
included in the PI cover and hence become essential. These are called secondary
essential PIs.

We will illustrate the concept of a less than relationship between two PIs and
then proceed to definitions of less than, a less than PI, and equivalent PIs. Con-
sider the function represented on the K-map in Figure 2. The essential Pls are A B
and B D. The minterms included in these PIs have been checked off. We now focus
on PIs A CD and B C D. Both of these PIs include unchecked minterm ABCD. But
BCD also includes unchecked minterm ABCD. Since we are interested in selecting
PIs that include unchecked minterms, would we ever select A C D rather than
BCD? The answer is no. First of all, the literal cost of implementing these two PIs
is three in both cases, so their cost is the same. Second, BCD includes all the
unchecked minterms that A C D does, but contains an additional unchecked min-
term. So BCD always contributes more to the goal of including minterms in Pls
than A C D does and, as a consequence, in moving forward with this solution, we
will never want to use A C D. We denote this by saying that A CD is less than BCD
and call A CD a less than PI Since we will never use A C D, we delete it. Then,
BCD becomes the only PI left that includes ABCD making it essential at this stage
in the solution. As a consequence, we say that BCD is a secondary essential PI and
add it to the PIs in the solution.

We say that PI; is less than PI;, denoted PI; < PI;, if: 1) PI; contains at least as
many literals as PI; and 2) PI;includes at least all of the as yet unchecked minterms
that PI; includes. Applying this to A CD and BCD, A C D contains three literals, as
least as many as the three literals in BCD. Also, BCD includes ABCD, the only
unchecked minterm included in A C D but includes ABCD as well. Thus, A CD <
BCD.

00 01 11 10

00 1 _

01 4 1
11 T[] 1

B
ACD
A /

10 1] ([1]

ABD D
O FIGURE 3
Example 3 — Less Than Relation between PIs Absent and Equivalent PIs

Assuming that BCD is now selected and ABCD and ABCD are now
checked, are there other less than relations between the remaining non-selected
PIs? Examination of the remaining non-selected PIs yields ABD < ABC and ACD
< ABC. Deleting the less than PIs ABD and ACD makes ABC a secondary essen-
tial PI. Adding it to the solution permits us to check off the remaining unchecked
minterms and thus completes the solution:

F(A,B,C,D)=AB+BD +BCD + ABC

Now, suppose we go back to the Example 1 in Figure 1. Is there a less than
relation between BD and ACD? They both include the same unchecked minterm.
And the number of literals in BD is two and in ACD is three. Thus, ACD < BD and
BD will be selected to complete the solution.

Example 3 in Figure 3 contains two PIs that overlap but have no less than
relation and presents the idea of equivalent PIs. Consider first the two PIs BD and
ACD. Since BD uses two literals and ACD uses three literals, BD cannot be less
than ACD. But since ACD covers ABCD as well as ABCD which BD also covers,
ACD cannot be less than BD. Thus, there is no less than relation between these
two PIs. Next, consider PIs ABD and ACD. Both use the same number of literals
and both included exactly one uncovered minterm AB CD. Based on the definition
of less than, ABD < ACD and ACD < ABD. In such a situation, the PI to be used
can be selected arbitrarily and ABD is said to be equivalent to ACD. Finally, ABC
< ACD. Deleting ABC, ACD becomes secondary essential and a part of the solu-
tion, making BD useless since it does not cover an unchecked 1. In this case, BD is
said to be a redundant PI. To complete the solution, we can select either ACD or
ABD since they are equivalent.

With these definition in hand, we now can present an initial PI selection algo-
rithm.

Initial PI Selection Algorithm

4 0O

00 01 11 10

00 1_ 1
01|] 1 1 ABC
B
11 T 1
A — .
10 1
I —|
D
O FIGURE 4

Example 4 — A Cyclic Structure

The steps of the algorithm developed thus far follow. Note that secondary essential
PIs are simply referred to here as essential Pls to simplify the flow of the algo-
rithm.

1. Find all PIs of the function F.

2. Select all essential PIs, checking off the included minterms.

3. Find all less than PIs and delete them. (As a result, some of the other

non-selected PIs may become essential.)

4. Repeat 2 and 3 until no more less than PIs appear.

5. Find equivalent PIs and select arbitrarily one PI from each set of

equivalent PIs, checking off included minterms.

6. Delete all redundant (unused) PIs.

In many cases, this algorithm succeeds in including all minterms of the func-
tion, giving a minimum PI cover. But there are cases in which there are remaining
unchecked minterms, but no more less than or equivalent PIs. In these cases, we
say that a cyclic structure exists.

Cyclic Structures

In the cases in which the initial algorithm does not complete, a pattern of Pls
referred to as a cyclic structure is present. This situation is illustrated in Example 4
in Figure 4. The only essential PI is ABCD on the left of the K-map. No essential
PIs or less than relations exists among the six PIs on the right of the K-map. Thus,
these PIs form a cyclic structure. Note that in this case, the Pls are linked together
like a chain or cycle; hence, the term cyclic structure.

The approach to handling a cyclic structure is to arbitrarily select a PI and
generate one cover and delete that same PI and generate a second cover. The lit-
eral cost of each cover is calculated and the lowest cost one is selected unless they
have the same cost in which case the selection is arbitrary. This approach can be
illustrated using Example 4. Suppose we pick ABC as the arbitrary PI to use. This

O 5

causes BCD and ACE to becon&a lgss than PIs, so these are deleted. The deletion
of these PIs makes ACD and BCD secondary essential PIs. Selecting these Pls
includes all minterms of the function giving the first solution:
F(A,B,C,D)=ABCD +ABC+ ACD + BCD
Note that the PI A BC is never used in this cover it is a redundant PL
Beginning again, omit ABC. This makes BCD and ACD secondary essential
PIs. Selecting these generates less than PIs ACD and BCD. Deleting the two less

than PIs causes A BC to become a secondary essential PI which is selected to com-
plete the second solution:

F(A, B, C, D)= ABCD + BCD + ACD + ABC

In this case, the two covers have the same literal cost, so either can be
selected as the final minimum literal cost expression.

Final Algorithm

The final minimum prime implicant cover algorithm:

1. Find all PIs of the function F.

2. Select all essential Pls, checking off included minterms.

3. Find all less than PIs and delete them. (As a result, some of the other
non-selected PIs may become essential.)

4. Repeat 2 and 3 until no more less than PIs appear.

5. Find equivalent PIs and select arbitrarily one PI from each set of
equivalent PIs, checking off included minterms.

6. If minterms remain unchecked and no PI less than relations can
be obtained, then a cyclic structure exists. For a cyclic structure,
(a) arbitrarily select a PI and repeat steps 1 through 6 and (b) delete
the same PI selected and repeat steps 1 through 6. Compare literal
cost of the solutions generated and select the minimum literal cost cover.

7. Discard any redundant (unused) PIs.

This algorithm will be illustrated in the next section, after we consider the
effects of don’t cares on it.

Functions with Don’t Cares

The algorithm can easily handle functions with don’t cares. The following simple rules
apply:

1) Treat don’t cares as if they are 1’s for PI generation.

2) Immediately delete any PIs that cover only don’t cares.

3) Don’t care minterms need not be covered by a PI or checked off.
(Inclusion of some of them and not others occurs arbitrarily in the
course of the solution.)

We now illustrate the final algorithm for Example 5 in Figure 5. Step 1, com-
pleted in part (a), yields the six PIs shown. Since there are no PIs that cover only
don’t cares, none are deleted. Since every minterm (with value 1) is included in at

6 0O

1 1
00 _ o1 11 10 00 01 11 10 00 01 11 10
00 d 00 d 00 d
01 1 1] d 01 1A|/4 d 01 14 /] d
B B b= =|==hn
11 d d 1 " 11 d df|v1 11 FRINE \/1 f
1 1
A A 1 I
ol d I[1]l 1] 10 o |[1]]] 1/] 4 1o o (I¥i1] g
-
D D D
(a) All PIs (b) Solution 1 (c) Solution2
Solution 1 = AC + BD + CD Solution 2 = AD+ BC + CD
Literal Cost = 6 Literal Cost = 6
O FIGURE 5

Example 5 — Illustration of Final Algorithm

least two PIs, there are no essential PIs found in step 2. Likewise, in step 3, no less
than PIs are found. Going to step 5, there are no equivalent PIs, which leads the
solution to a cyclic structure and execution of step 6(a). In Figure 5(b), PI AC is
arbitrarily picked. This makes BC < BD and upon the removal of BC, BD becomes
essential. The included minterms are checked. CD, AB and AD are equivalent
since each covers AB CD and they have the same literal cost. We arbitrarily pick
CD to obtain Solution 1 with a literal cost of 6, as shown in Figure 5(b).

We now return to execute step 6(b) and omit AC, the arbitrary PI selected
earlier to produce a new solution. This makes BC essential. Inclusion of BC makes
BD < CD. Deletion of BD makes CD essential. The remaining PIs, AB and AD,
are equivalent since both cover ABCD and they have the same literal cost. Arbi-
trarily selecting AD gives Solution 2 in Figure 5(c) with a literal cost of 6. Since the
two solutions have the same literal cost, either can be selected as a final solution.

The Tabular Algorithm

We have studied K-maps for up to four variables. Five- and six-variable K-maps
are logical extensions using multiple four variable maps. For larger numbers of
variables, the geometric representation becomes intractable. So an alternative
algorithm is needed. The particular algorithm that we will introduce uses the Bool-
ean identity XY + XY = Y known as the minimization theorem for prime implicant
generation beginning with minterms. It also implements the prime implicant selec-
tion algorithm as discussed in the prior section. The tabular algorithm is also called
the Quine-McCluskey algorithm.

The algorithm uses a cubical notation for product terms, so before discussing
and illustrating the algorithm, we need to introduce this notation. A cube is a vec-
tor of 1’s, 0’s and —’s corresponding to a product term. The order of the variables in
the product term must be known for the cube to be meaningful. To form a cube
from a product term, a true literal is replaced by a 1, a complemented literal by a 0

X XXXy + X1 XoX5Xs = X1 XX, X1 XaXy + X1 X3X4 = X1 X5 X X5 + X4 X5 = X3

X3 X3 X3
1 1 1

00 01 11 _ 10 00 01 1110 00 o1 .11 10
00 1] 1 00| 1] 1 00 EHEEY
O

T

01 1

_k
=
|: -
-
o
o
o
=
=
-
[
IR
[
X
2
—
-
|

=
o
—_
|
-
-

1-10 X4
1010 1-10 gy 0-1-
1110 =P 1-10 -1 i 1-1- -
(a) (b) (c)

O FIGURE 6
Illustration of Minimization Theorem Application

—_

and a missing literal by a blank (-). For example, if the variables are ordered X;,
X5, X3, X, and the product term is X;X,X,, then the corresponding cube is 10-1.
The minterm X, X,X;X/ is represented by 0101. In the next subsection, we will see
how the minimization theorem can be applied by using this notation and how it can
be used to systematically generate all prime implicants for a function.

Prime Implicant Generation

Since the minimization theorem, XY + XY =Y, is the basis for this algorithm, we
need to represent the application of the theorem in the cubical domain. First, we
note that, in the application of the theorem, X is one of the variables, X is its com-
plement, and Y is a product of other literals. For example,
X XoX3X, + X1 XoX5X, = X, XX,

The first two terms in the above are represented by cubes 1010 and 1110 and the
resulting cube is represented by 1-10. Note that the first two cubes match in all
positions but one and in that position a 0 appears in one cube and a 1 in the other.
In the resulting cube, a — is placed in that position and all of the other positions in
which the cubes match are copied. Figure 6(a) shows the application of the theo-
rem for this case. The equation appears first with a representation of the equation
on a K-map. From this map, it is apparent that the terms on the left of the equation
correspond to two adjacent squares on the map. The product term on the right of
the equation corresponds to the rectangle that is the combination of these two
squares. By reading off the 0 and 1 entries on the edges of the K-map, we find that
the cubes for the two squares are 1010 and 1110. By copying the entries in which
these two cubes match and replacing the entry in which they differ by a —, we

Xz

(b) Minterms in

(a) Minterms Index Order (c) 1-Cubes (d) 2-Cubes
0011 1 0100 010-v" -1-0
0100 1,2 01-0v" 123 _qo-
0101 0011+ 100+
0110 0101 v/

1001 , 01107 -011
1010 1001 v/ -101v/
1011 1010 v/ —110v"
1100 1100 v 10-1
1101 1011 v 2,3 1-01
1110 3 1101 v/ 101-
1110 v~ 1-10
110-v"
11-0v"
O FIGURE 7

Tabular Prime Implicant Generation for Example 3 in Figure 3

obtain 1-10 as indicated by the large arrow. This cube corresponds as expected to
the rectangle on the K-map.

Figure 6(b) shows two terms on the left of the equation involving three of the
four variables. Investigation of the corresponding K-map shows that these corre-
spond to adjacent rectangles of size two. The cubes for these rectangles can be read
as 1-11 and 1-10. These can likewise be obtained from the equations by definition
of the cubes. Combining the adjacent rectangles gives 1-1— which is the same as the
result obtained by combining the cubes. Note that there are two other rectangles
on the K-map shown as dashed lines that also combine to give the same result.
These are of note since they will appear and be removed in the algorithm we will
use.

Finally, Figure 6(c) shows two terms, X; X3 and X X3 involving just two of the
four variables. These again correspond to adjacent rectangles which can be com-
bined to yield a larger rectangle. Using cubes, this corresponds to combining 01—
and 1-1- to give — —1-. These three examples illustrate how the minimization theo-
rem applications correspond in the three different representations. It clearly shows
how adjacent rectangles on the K-maps appear as cubes that are identical in all but
one entry and contain 0 and 1, respectively, in that entry. It also shows how the
cube corresponding to the larger rectangle on the K-map is obtained by copying
the identical entries and placing a — in the entry containing the 0 and 1.

In Figure 7, we illustrate the tabular prime implicant generation algorithm for
Example 3 in Figure 3. We begin with cubes corresponding to minterms and look
for adjacent cubes differing in exactly one position. If we do this to a list of cubes
as shown in Figure 7(a), then we compare each cube to all those that follow, con-
sidering all possible pairs of cubes. By first arranging the cubes in groups based on
the number of 1’s in each cube, we can substantially reduce the number of compar-
isons. The number of 1’s is called the index of a cube and we need only compare
cubes with indexes differing by 1. Figure 7(b) shows such an arrangement of the

cubes from Figure 7(a) with the index of each group given on the left. This
arrangement of cubes for the minterms is the first step of the algorithm.

In the second step of the algorithm, we compare each cube with index i to all
cubes with index i + 1. If two cubes can be combined, then we place a check by
each of the cubes and write the resulting cube in the group labeled (i, i + 1) in the
next column. A check by a cube indicates that cube has been combined into a
larger cube and is not a PI. To illustrate, 0100 combines with 0101 to give 010- and
we check off 0100 and 0101. All of the results of this step are shown in Figure 7(c)
and are labeled as 1-cubes. The 1-cubes have one variable missing in the corre-
sponding product term.

A form of the second step is then repeated until there are no more cubes that
can be combined. In the example, the cubes with indexes 1,2 are compared with
those with indices 2,3. Note that the cubes in group 1,2 contain a single 1 and a sin-
gle — and in group 2,3 contain two 1’s and a single —. Thus cubes from these two
groups have potential to be adjacent. But cubes from group 0,1 and 2,3 could not
be adjacent since they would contain zero 1’s and one — and two 1’s and one -.
Thus, again, only cubes in adjacent groups need to be compared. There is a short-
cut that can be used in comparison of cubes containing —’s. In order for two cubes
in adjacent groups to combine, they must have —’s in identical positions. These
cubes can be visually recognized with ease. This step for the example yields Figure
7(d) consisting of 2-cubes. It is interesting to note that 01-0 and 11-0 form -1-0
and are checked off. But, —-100 and -110 also form -1-0. Since -1-0 is already
listed, we do not repeat it, but simply check off —100 and -110. This checkoff is
based on the equation X + XY = X.

The two cubes appearing in the 2-cube column are in the same group and
thus cannot be combined, so the algorithm execution is finished. All cubes without
a check are prime implicants. The prime implicants shown can be verified by com-
paring them with the rectangles given in Figure 3.

The prime implicant generation algorithm we have just executed for the
example is as follows:

1. Find the cubes corresponding to minterms and arrange them in order

based on their index.
2. Compare cubes in groups with indexes differing by 1, forming a new
cube in the next column for adjacent cubes if such a cube does not
already exist. Check off the cubes from which a new cube has been
(or could have been) formed.

3. Repeat step 2 until no new cubes are formed.

4. The cubes not checked off are the prime implicants.

The Prime Implicant Table

Selection in the overall algorithm begins with step 2 of the final algorithm from the first
section, but the information is represented by a prime implicant table instead of a K-map.
This table has a row for each PI and a column for each minterm for which the function has
value 1. If a Pl includes a minterm, then an X is placed at the intersection of the PI row and
the minterm column. The prime implicant table for Example 3 is shown in Figure 8. Con-

10 O

00\\ 0\06 Q\Q\ \QO\ \Q\Q \Q\\ \\QQ \\Q\ \"\0

E -011 | X X
EQ 10-1 X X
EQ 1-01 X X
LT 101- X | X
SE 1-10 X X
RE -1-0 X X X
E —10- X | X X | X

S S

/ /
/

O FIGURE 8

Prime Implicant Table for Example 3 in Figure 3

sider the prime implicant —1-0. By filling in all possible combinations of 0 and 1 for the
two — entries, we find that minterms 0100, 0110, 1100, and 1110 are covered.The three
minterms 0100, 1100, and 1110 are marked with X’s in the —1-0. In the original specifica-
tion, minterm 0110, however, has a don’t care value, permitting it to be either O or 1. Since
it does not need to be covered, it is omitted from the table.

In the second step of the PI Selection Algorithm, we select essential prime
implicants. To identify essential PIs, we look for columns containing a single X.
Such a column identifies a minterm included in a single PI. For the example, there
are single X’s in columns 0011 and 0101. The essential PIs for these X’s are —011
and —-10-. We select these PIs and place a check at the bottom of the columns of
the minterms included in them. Next, we examine PIs associated with the three
unchecked minterms to look for less than relations; we specifically will look at lit-
eral costs and the unchecked minterms included in these PIs. Beginning with 1001,
we find that 1-01 and 10-1 have the same number of literals and both cover 1001
and no other unchecked PIs. Thus, 1-01 and 10-1 are equivalent. Next, looking at
1010, we find that 101- and 1-10 have the same number of literals and that 1-10
includes 1110 as well as 1010. Thus, 101- < 1-10. Finally, examining the 1110 col-
umn, —1-0 has fewer literals than 1-10, but 1-10 includes an added minterm. So no
less than relation can be established between —1-0 and 1-10. Deleting less than PI
101-, 1-10 becomes a (secondary) essential PIs. The included minterms are
checked off in the second row of checks at the bottom of the table. Since only 1001
is left, we can select either 10-1 or 1-01 to complete the solution.

Example 4, the final example, employs a function with a simple cyclic struc-
ture given as the PI table in Figure 9. Since every column contains at least two X’s,
there are no essential prime implicants. This cyclic structure has been handled by
arbitrarily picking PI 00- to be used in the solution. The selection of this PI causes
— 01 and 0-0 to be less than PIs. In turn, this forces PI’s 1-1 and -10 to be second-

o 1

Pick 00— X
LT —o1 X X
SE 1-1 X X
RE _11- X | X
SE —10 X X
LT o0 | X X

s

S
O FIGURE 9

Prime Implicant Table for Example 4 — Solution with 00— Picked

ary essential. Their selection covers the remainder of the minterms and PI 11- is
not needed and labeled as redundant.

The solution with 00- picked may not be the lowest cost. So, in order to cover
the whole solution space, a solution with 00— omitted must be found. This solution
is represented by the prime implicant table in Figure 10. Since both solutions have
the same cost, either can be used.

Finally, we note that all algorithms can be applied to product-of-sums mini-
mum PI covers by using F instead of F with an inverter placed at the output gener-
ating F. These may yield better solutions that those obtained for F with little cost
for the additional inverter.

Q/ N/ Q0 /"X /.0
QQQQQ’\\Q\\’\

Omit 00— | XX
SE 01 X
LT 11 X X
SE 11- X | X
LT -10 X X
SE 00 |[X X

S

O FIGURE 10
Prime Implicant Table for Example 4 — Solution with 00— Omitted

12 0O

It is clear from the examples in the prior section and this section that solution

of the general two-level optimization problem using the Quine-McCluskey algo-
rithm can become complex. Because of this, practical computer implementations of
optimization algorithms do not necessarily obtain minimal cost solutions and
employ approaches that avoid enumerating minterms and all prime implicants.
One such practical algorithm, Espresso, is illustrated in section 2-6 of the text.

References

1.

2.

MANO, M. M. AND C. R. KIME. Logic and Computer Design Fundamentals, 4th
ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.

DIETMEYER, D. L., Logic Design of Digital Systems, 3rd ed. Boston: Allyn
Bacon, 1988.

WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle
River, NJ: Prentice Hall, 2006.

Problems
The plus (+) indicates a more advanced problem.

1.

Use a K-map to generate a list of all prime implicants for the function
E(A,B,C,D) =2 m(0,1,5,7,8,10, 14, 15).

Then use the prime implicant selection algorithm to find a minimum cost
solution in equation form. Identify the type taken on by each of the prime
implicants at each step in your solution. The types are: essential (E), less
than (L), secondary essential (S), equivalent (EQ), redundant (R), pick (P)
and omit (O). The latter two types, pick and omit are applied to one or more
prime implicants to produce alternate solutions used to resolve cyclic
structures.

Repeat problem 1 for the function
F(W,X,Y,Z)=2m(0,12,3,4,8,10,11,12,13, 15).

Repeat problem 1 for the function:

G(A,B,C,D) =2 m (0,1,2,5,8,10,11,15),

Gd(A, B, C, D) = Zd m (7,13)
Repeat problem 1 for the function:
H(A, B,C,D) =2 m (0,5,10,15),

Hy(A, B, C, D) =Xym (1,2,4,7,8,11,13,14).

Repeat problem 1 for the function:
I1(W,X,Y,Z)=2m(0,2,6,7,9,13,15),
Id(W, X_, Y, Z) = de (8,10)

finding solutions for both I and I. Compare the costs and select the one with
the least cost.

Use the tabular algorithm to find a list of all prime implicants for F in
problem 2. Using your prime implicants, use the tabular algorithm to find a

o 13

10.

14

minimum cost solution. On the table(s), be sure to indicate the type (See
problem 1) of each PI with respect to your solution.

Repeat Problem 6 for the function H from problem 4.

The PIs for a particular function M(A, B, C, D) are as follows: B D,
ACD,ABC,BCD,ACD,ABC,and A CD. The minterm ABCD is a
don’t care. Use a prime implicant table(s) to find a minimum cost solution.
On the table(s), be sure to indicate the type (See problem 1) of each PI with
respect to your solution.

Repeat problem 8 for the function N(A, B, C, D, E) with the following prime

D E are don’t cares.

+Repeat problem 8 for the function P(A, B, C, D, E) with the prime
implicant table given below. Hint: Note that the table is broken up by double
lines into four regions with cyclic structures in region 1, in region 2, and a
single cyclic structure that spans regions 3 and 4. All of these cyclic
structures consists of 2-cubes. It is suggested that you make four copies of
the table to resolve the cyclic structures in regions 1 and 2. The four
solutions will be produced as follows: (Pick PI 00-0-, Pick PI 1-00-), (Pick PI
00-0-, Omit PI 1-00-), (Omit PI 00-0-, Pick PI 1-00-), and (Omit PI 00-0-,

E||/0|1|0{1(1|1|1/1|0|0/0O(0j0101/0000(1111
Djojo|ojo(1(1|1|1(1(1joj0jjoooo11111100
cijjojoj1|1|oj1(0|1|0{1|0|1f0OO0OO0O0O0O01T 11111
Bjojojojojo0|1|1f1(1|1|1jj0 01101010101
Type|/ABCDE|A|0|0[0|0O[0|OO|O(O|O(O(O||1T 11111111111
00-0- XXX
00--1 X XXX
0--11 X XXX
01-1- X[XXX
01--0 XXX X
0--00 X X XX
1-00- X XXX
1-0-0 X X XX
1--10 X XXX
1-11- X[XXX
1-1-1 XIX[X]X
1--01 X| X XX
-000 - X X
-0-01 X| X X X
-01-1 X[X X X
--111 X X X[X
-111- X X X X
-1-10 XX X[X
-10-0 X X X X
--000 |X X X X

Omit PI 1-00-). The PIs in the cycle in regions 3 and 4 become all less thans
in these solutions, so are not used. Compare the four solutions and pick one
that has a minimum cost.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

