7 Series FPGA Overview
7 Series FPGA Families

<table>
<thead>
<tr>
<th>Maximum Capability</th>
<th>ARTIX.®</th>
<th>KINTEX.®</th>
<th>VIRTEX.®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Cells</td>
<td>20K – 355K</td>
<td>70K – 480K</td>
<td>285K – 2,000K</td>
</tr>
<tr>
<td>Block RAM</td>
<td>12 Mb</td>
<td>34 Mb</td>
<td>65 Mb</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>40 – 700</td>
<td>240 – 1,920</td>
<td>700 – 3,960</td>
</tr>
<tr>
<td>Peak DSP Perf.</td>
<td>504 GMACS</td>
<td>2,450 GMACs</td>
<td>5,053 GMACS</td>
</tr>
<tr>
<td>Transceivers</td>
<td>4</td>
<td>32</td>
<td>88</td>
</tr>
<tr>
<td>Transceiver Performance</td>
<td>3.75Gbps</td>
<td>6.6Gbps and 12.5Gbps</td>
<td>12.5Gbps, 13.1Gbps and 28Gbps</td>
</tr>
<tr>
<td>Memory Performance</td>
<td>1066Mbps</td>
<td>1866Mbps</td>
<td>1866Mbps</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>450</td>
<td>500</td>
<td>1,200</td>
</tr>
<tr>
<td>I/O Voltages</td>
<td>3.3V and below</td>
<td>3.3V and below</td>
<td>3.3V and below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8V and below</td>
<td>1.8V and below</td>
</tr>
</tbody>
</table>
Virtex-7 Devices

- The Virtex-7 family has several devices
 - Virtex-7: General logic
 - Virtex-7XT: Rich DSP and block RAM, higher serial bandwidth
 - Virtex-7HT: Highest serial bandwidth
Architecture Alignment

- Common elements enable easy IP reuse for quick design portability across all 7 series families
 - Design scalability from low-cost to high-performance
 - Expanded eco-system support
 - Quickest TTM

- Logic Fabric LUT-6 CLB
- On-Chip Memory 36Kbit/18Kbit Block RAM
- DSP Engines DSP48E1 Slices
- Hi-performance Serial I/O Connectivity Transceiver Technology
- Precise, Low Jitter Clocking MMCMs
- Enhanced Connectivity PCIe® Interface Blocks
- Hi-perf. Parallel I/O Connectivity SelectIO™ Technology
Strong Focus on Power Reduction

Additional Power Saving Features

High performance, low power process

Reducing Static Power

Transistor choice optimization

Reducing Dynamic Power

Reducing I/O Power

Optimized Hard Blocks

Unused BRAM Power Savings

Reducing I/O Power

IO Design & User Power Saving Modes

VCCO

Pad

+VCCO

Out

In

Lower device core voltage

Fine grain clock and logic gating

5th gen. partial reconfiguration

Integrated Analog Front End

VCCAU

Config Memory

Reduced from 2.5V to 1.8V

Before After

5th gen. partial reconfiguration

-1 L

Xilinx 7 Series FPGAs

© Copyright 2011 Xilinx
7 Series Lower Power Differentiation

- 50% lower total power
 - 65% lower static power enabled by 28nm High-Performance, Low-Power (HPL) HKMG process
 - 25%+ lower dynamic power via architectural evolution
 - 30% lower I/O power with enhanced capability

- System design flexibility
 - 50% lower power budget
 OR
 - Take advantage of additional usable performance and capacity at the previous power budget

* Additional savings beyond 25% from optimized hardened blocks
Fourth-Generation ASMBL Architecture

- Optimized FPGA feature mix for different families/members
 - FPGA comprises columns of different resources
 - Clocking, I/O, BRAM, DSP, HSSIO
- Enables the unified architecture between the different 7 series families
- Enables different resource ratios within the different devices
7 Series FPGA Layout

- All devices contain two I/O columns
 - Contains parallel I/O resources
- Clock Management Tile (CMT) columns are adjacent to I/O columns
 - Enables high speed I/O interfaces
- Clock routing resources are in the center column
- High-speed serial I/O replace I/O banks in smaller devices or are contained in additional columns in larger devices
Clock Regions and I/O Banks

- Each clock region is 50 CLBs tall
 - An increase from 40 CLBs in previous technologies
 - Regional clock resources remain in the center of the clock region
 - 25 rows of CLBs above and below the clock routing

- I/O banks are 50 IOBs tall
 - An increase from 40 IOBs in previous technologies
 - I/O banks and clock regions are aligned, like in previous technologies
CLB Structure

- Two side-by-side slices per CLB
 - Slice_M are memory-capable
 - Slice_L are logic and carry only

- Four 6-input LUTs per slice
 - Consistent with previous architectures
 - Single LUT in Slice_M can be a 32-bit shift register or 64 x 1 RAM

- Two flip-flops per LUT
 - Excellent for heavily pipelined designs
Block RAM

- **36K/18K block RAM**
 - All Xilinx 7 series FPGA families use same block RAM as Virtex-6 FPGAs
- **Configurations same as Virtex-6 FPGAs**
 - 32k x 1 to 512 x 72 in one 36K block
 - Simple dual-port and true dual-port configurations
 - Built-in FIFO logic
 - 64-bit error correction coding per 36K block
 - Adjacent blocks combine to 64K x 1 without extra logic
DSP Slice

- All 7 series FPGAs share the same DSP slice
 - 25x18 multiplier
 - 25-bit pre-adder
 - Flexible pipeline
 - Cascade in and out
 - Carry in and out
 - 96-bit MACC
 - SIMD support
 - 48-bit ALU
 - Pattern detect
 - 17-bit shifter
 - Dynamic operation (cycle by cycle)
Clocking Resources

- Based on the established Virtex-6 FPGA clocking structure
 - All 7 series FPGAs use the same unified architecture
- Low-skew clock distribution
 - Combination of paths for driving clock signals to and from different locations
- Clock buffers
 - High fanout buffers for connecting clock signals to the various routing resources
- Clock regions
 - Device divided into clock regions with dedicated resources
- Clock management tile (CMT)
 - One MMCM and one PLL per CMT
 - Up to 24 CMTs per device
Two distinct I/O types
- High range: Supports standards up to 3.3V
- High performance: Higher performance with more I/O delay capability
 - Supports I/O standards up to 1.8V

Extension of logic layer functionality
- Wider input/output SERDES
- Addition of independent ODELAY

New hardware blocks to address highest I/O performance
- Phaser, IO FIFO, IO PLL
Stacked Silicon Interconnect Technology

- Largest Virtex-7 device is almost three times the size of the largest Virtex-6 device
 - Growth is higher than Moore’s Law dictates
- Enabled by Stacked Silicon Interconnect (SSI) technology
 - Multiple FPGA die on a silicon interposer
 - Each die is referred to as a Super Logic Region (SLR)
 - Vast quantity of interconnect between adjacent SLRs are provided by the interposer
Stacked Silicon Implications

- Enables substantially larger devices
- Device is treated as a single monolithic device
 - Tool chains place and route complete device as if it was one die
- Minor design considerations around clocking and routing
High-Speed Serial I/O Transceivers

- Available in all families
- GTP transceivers – up to 3.75 Gbps
 - Ultra high volume transceiver
 - Wire bond package capable
- GTX transceivers – up to 12.5 Gbps
 - Support for the most common 10 Gbps protocols
- GTH transceivers – up to 13.1 Gbps
 - Support for 10 Gbps protocols with high FEC overhead
- GTZ transceivers – up to 28 Gbps
 - Enables next generation 100–400Gbps system line cards
PCI Express

- **Features**
 - Compliant to PCIe Revision 2.1
 - Endpoint & root port
 - AXI user interface
 - <100 ms configuration*
 - FPGA configuration over PCI Express*
 - End-to-end CRC*
 - Advanced error reporting*
 - 100-MHz clocking

- **New wrappers**
 - Multi-function*
 - Single-root I/O virtualization*

- **Configurations**
 - Lane widths: x1-8
 - Data rates: Gen1 & Gen2 (2.5/5.0 Gbps)
 - Dependent on GT and fabric speed

*New features in 7 series
XADC: Dual 12-Bit 1-MSPS ADCs

- 17 External Analog Inputs
- On-Chip Sensors
- On-Chip Sensors Supplies ±1% Temperature ±4°C
- ±1% Temperature ±4°C
- MUX
- ADC 1
- ADC 2
- 2 x 12 Bits 1 MSPS
- Status Registers
- Control Registers
- DRP
- Arbitrator
- Dynamic Reconfiguration Port
- JTAG
- Interconnect
- Define XADC Operation
- Initialize with Attributes
- ADC Results

© Copyright 2011 Xilinx
Cost, Power, and Performance

- The different families in the 7 series provide solutions to address the different price/performance/power requirements of the FPGA market
 - Artix-7 family: Lowest price and power for high volume and consumer applications
 - Battery powered devices, automotive, commercial digital cameras
 - Kintex-7 family: Best price/performance
 - Wireless and wired communication, medical, broadcast
 - Virtex-7 family: Highest performance and capacity
 - High-end wired communication, test and measurement, advanced RADAR, high performance computing
I/O Composition

- Each 7 series I/O bank contains one type of I/O
 - High Range (HR)
 - High Performance (HP)
- Different devices have different mixtures of I/O banks

<table>
<thead>
<tr>
<th>I/O Types</th>
<th>Artix-7 Family</th>
<th>Kintex-7 Family</th>
<th>Virtex-7 Family</th>
<th>Virtex-7 XT/HT Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Range</td>
<td>All</td>
<td>Most</td>
<td>Some</td>
<td></td>
</tr>
<tr>
<td>High Performance</td>
<td>Some</td>
<td>Most</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Gigabit Transceiver

- Different families have different MGT devices
 - Artix-7 family: GTP
 - Kintex-7/Virtex-7 family: GTX
 - Virtex-7 XT family: Mixture of GTX and GTH
 - Virtex-7 HT family: Mixture of GTH and GTZ

<table>
<thead>
<tr>
<th>Speed Grade</th>
<th>Artix GTP</th>
<th>Kintex GTX</th>
<th>Virtex GTX</th>
<th>Virtex GTH</th>
<th>Virtex GTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>max (FF)</td>
</tr>
<tr>
<td>1LC/I</td>
<td>0.612</td>
<td>3.125</td>
<td>0.612</td>
<td>5.0</td>
<td>6.6</td>
</tr>
<tr>
<td>1C/I</td>
<td>0.612</td>
<td>3.125</td>
<td>0.612</td>
<td>5.0</td>
<td>6.6</td>
</tr>
<tr>
<td>2C/I</td>
<td>0.612</td>
<td>3.75</td>
<td>0.612</td>
<td>6.6</td>
<td>10.3125</td>
</tr>
<tr>
<td>3C</td>
<td>N/A</td>
<td>N/A</td>
<td>0.612</td>
<td>6.6</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Packaging – Artix-7 Family

- Ultra low-cost wire bond technology
- Small form factor
- Fourth generation sparse chevron pin pattern
- Speeds up to 1.066 Gbps for parallel I/O
- Speeds up to 3.75 Gbps for MGT
Kintex-7 devices are available in two different packages
- Low cost bare die flip chip (FB) and conventional flip chip (FF)
- Small form factor packaging available
Fourth generation sparse chevron pin pattern
Speeds up to 2.133 Gbps for parallel I/O
Speeds up to 12.5 Gbps for MGT in FF package, and 6.6 Gbps in FB package
FB package has discrete substrate decoupling capacitors for MGT power supplies
Packaging – Virtex-7 Family

- High performance flip chip (FF) package
- Fourth generation sparse chevron pin pattern
- Speeds up to 2.133 Gbps for parallel I/O
- Speeds up to 28.05 Gbps for MGT
- Discrete substrate decoupling capacitors:
 - MGT power supplies
 - Block RAM power supplies
 - I/O pre-driver power supplies
Where Can I Learn More?

- **Xilinx Education Services courses** www.xilinx.com/training
 - *Designing with 7-Series Device Families* course
 - How to get the most out of both device families
 - How to build the best HDL code for your FPGA design
 - How to optimize your design for Spartan-6 and/or Virtex-6
 - How to take advantage of the newest device features

- **Free Video Based Training**
 - *Part 1, 2, and 3 of the 7 Series FPGA Overview*
 - *How Do I Plan to Power My FPGA?*
 - *What are the Spartan-6 Power Management Features?*
 - *What are the Virtex-6 Power Management Features?*
 - *Basic FPGA Configuration, Parts 1 and 2*